|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Signal, image, vision
/ 26-05-2023
Zhang Chen
Voir le résumé
Voir le résumé
Cette thèse porte sur l’aide à la thérapie des fibromes utérins (tumeurs bénignes mais pouvant être douloureuses et entraîner des problèmes de fertilité) par ultrasons focalisés haute intensité (HIFU) et des cancers du col de l'utérus par radiothérapie adaptative (ART). Dans les deux cas, l'annotation précise des lésions dans la région utérine et des organes à risque environnants est une partie essentielle du diagnostic et de la planification du traitement. Dans cette thèse, nous avons proposé, d’une part deux outils de segmentations automatiques par apprentissage profond de l'utérus, des fibromes et de la colonne vertébrale en IRM préopératoire du traitement HIFU: 1) HIFUNet, un nouveau réseau neuronal convolutionnel entièrement supervisé et 2) PLRNet, une méthode basée sur de l'apprentissage semi-supervisé qui vise à obtenir des résultats de segmentation comparables aux méthodes entièrement supervisées avec seulement une petite quantité de données annotées. D’autre part, nous avons conçu une stratégie de détermination du plan du jour pour l'ART guidée par CBCT pour le cancer du col de l'utérus qui comprend un module de segmentation d'images CBCT basée sur de l'apprentissage profond suivi d’une sélection du plan du jour dans une bibliothèque de plans de traitement.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|