|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Informatique
/ 24-05-2024
Younes Mohamed
Voir le résumé
Voir le résumé
Cette thèse étudie l’extraction et la simulation des interactions entre combattants, principalement pour la boxe, en utilisant des techniques d’apprentissage profond : l’estimation du mouvement humain à partir de vidéos, l’apprentissage par imitation basé sur l’apprentissage par renforcement, et la simulation de personnages basée sur la physique. Dans le contexte de l’analyse sportive à partir de vidéos, un protocole de référence est proposé dans lequel diverses méthodes contemporaines d’extraction de poses humaines en 2D sont évaluées pour leur précision à dériver des informations positionnelles à partir d’enregistrements vidéo RVB de boxeurs lors de mouvements complexes et dans des circonstances de tournage défavorables. Dans une deuxième partie, la thèse se concentre sur la reproduction d’interactions réalistes entre boxeurs à partir de données de mouvement et d’interaction grâce à une méthodologie innovante permettant d’imiter les interactions et les mouvements de plusieurs personnages simulés physiquement à partir de données de capture de mouvement non organisées. Initialement, cette technique a été démontrée pour simuler une boxe légère entre deux combattants sans contact physique significatif. Par la suite, elle a été étendue pour prendre en compte des données d’interaction supplémentaires concernant la boxe avec du contact physique réel et d’autres activités de combat, ainsi que pour gérer les instructions de l’utilisateur et les restrictions d’interaction.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|