|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs Interactions
/ 18-12-2020
Vu Thi Minh Phuong
Voir le résumé
Voir le résumé
Soit X une variété rigide analytique lisse sur un corps non-archimédien complet de valuation discrète K de caractéristique mixte (0; p) et G un groupe p-adique qui agit continûment sur X. Le but de cette thèse est de développer une notion d'holonomicité faible pour des D-modules G-équivariants coadmissibles X. Nous donnerons dans ce qui suit un résumé pour chaque chapitre. Après avoir introduit la théorie des D-modules sur les espaces rigides analytiques et résumé les résultats principaux de la thèse dans le premier chapitre, nous rappelons dans le deuxième chapitre quelques notions et propriétés de base de la géométrie rigide analytique et du groupes de Lie p-adique, puis nous résumons quelques résultats importants de la théorie des D-modules
G-équivariant coadmissibles sur X. Dans le troisième chapitre, nous développons une théorie de dimension pour les D(X;G)-modules coadmissibles. Pour ce fait, nous montrons tout d'abord que la K-algèbre D(X;G) est coadmissiblement Auslander-Gorenstein de dimension au plus 2dimX. Ceci nous permet de définir correctement la fonction de dimension sur la catégorie des D(X;G)-modules coadmissibles. La quatrième partie de la thèse est consacrée la construction des foncteurs appelés Ext-foncteurs E^i pour tous i et aussi l'étude de l'holonomicité faible pour des D-modules G-équivariants coadmissibles. Dans la première partie de ce chapitre, nous allons travailler sur de nombreuses propositions techniques afin de définir, pour chaque i , le foncteur E^i sur la catégorie C des D-modules G-quivariant coadmissibles. Dans la deuxième partie du chapitre 4, nous définissons la notion de dimension d'un D-module G-équivariant coadmissible et nous prouvons que l'inégalité de Bernstein est vraie pour le cas des variétés de drapeaux rigides analytiques. Cela nous permet de définir une holonomicité faible dans ce cadre. Nous allons également montrer qu'il existe un foncteur de dualité D sur la catégorie des D-modules équivariants faiblement holonomes. Dans le dernier chapitre, nous présentons quelques exemples typiques de D-modules G-équivariants faiblement holonomes. Nous prouvons que l'extension de toute connexion intégrable équivariante est faiblement holonome. En particulier, nous montrons que le faisceau structural OX est un D- module G-équivariant faiblement holonæme. Le deuxième exemple vient du cas où X est une variété de drapeaux rigide analytique associée un groupe algébrique connexe déployé G sur K. Dans ce cas, nous montrons que la localisation d'un module d'Orlik-Strauch est un D-module G-équivariant faiblement holonome.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|