Voir le résumé
Le but de cette thèse était d'explorer la thématique du scoring dans le cadre de son utilisation dans le monde bancaire, et plus particulièrement pour contrôler le risque de crédit. En effet, la diversification et la globalisation des activités bancaires dans la deuxième moitié du XXe siècle ont conduit à l'instauration d'un certain nombre de régulations, afin de pouvoir s'assurer que les établissements bancaires disposent de capitaux nécessaires à couvrir le risque qu'ils prennent. Cette régulation impose ainsi la modélisation de certains indicateurs de risque, dont la probabilité de défaut, qui est pour un prêt en particulier la probabilité que le client se retrouve dans l'impossibilité de rembourser la somme qu'il doit. La modélisation de cet indicateur passe par la définition d'une variable d'intérêt appelée critère de risque, dénotant les "bons payeurs" et les "mauvais payeurs". Retranscrit dans un cadre statistique plus formel, cela signifie que nous cherchons à modéliser une variable à valeurs dans {0,1} par un ensemble de variables explicatives. Cette problématique est en pratique traitée comme une question de scoring. Le scoring consiste en la définition de fonction, appelées fonctions de score, qui retransmettent l'information contenue dans l'ensemble des variables explicatives dans une note de score réelle. L'objectif d'une telle fonction sera de donner sur les individus le même ordonnancement que la probabilité a posteriori du modèle, de manière à ce que les individus ayant une forte probabilité d'être "bons" aient une note élevée, et inversement que les individus ayant une forte probabilité d'être "mauvais" (et donc un risque fort pour la banque) aient une note faible. Des critères de performance tels que la courbe ROC et l'AUC ont été définis, permettant de quantifier à quel point l'ordonnancement produit par la fonction de score est pertinent. La méthode de référence pour obtenir des fonctions de score est la régression logistique, que nous présentons ici. Une problématique majeure dans le scoring pour le risque de crédit est celle de la sélection de variables. En effet, les banques disposent de larges bases de données recensant toutes les informations dont elles disposent sur leurs clients, aussi bien sociodémographiques que comportementales, et toutes ne permettent pas d'expliquer le critère de risque. Afin d'aborder ce sujet, nous avons choisi de considérer la technique du Lasso, reposant sur l'application d'une contrainte sur les coefficients, de manière à fixer les valeurs des coefficients les moins significatifs à zéro. Nous avons envisagé cette méthode dans le cadre des régressions linéaires et logistiques, ainsi qu'une extension appelée Group Lasso, permettant de considérer les variables explicatives par groupes. Nous avons ensuite considéré le cas où la variable réponse n'est plus binaire, mais polytomique, c'est-à-dire avec plusieurs niveaux de réponse possibles. La première étape a été de présenter une définition du scoring équivalente à celle présentée précédemment dans le cas binaire. Nous avons ensuite présenté différentes méthodes de régression adaptées à ce nouveau cas d'étude : une généralisation de la régression logistique binaire, des méthodes semi-paramétriques, ainsi qu'une application à la régression logistique polytomique du principe du Lasso. Enfin, le dernier chapitre est consacré à l'application de certaines des méthodes évoquées dans le manuscrit sur des jeux de données réelles, permettant de les confronter aux besoins réels de l'entreprise.