|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Électronique
/ 09-01-2024
Touhami Abdellah
Voir le résumé
Voir le résumé
L’évolution des standards de communication impose le besoin des architectures antennaires plus sophistiqués associés à des techniques de diversité d’antennes et de formation de faisceaux. Ce type d’antennes offre des nouvelles possibilités pour les applications sans fil en termes d’efficacité spectrale, de fiabilité des liens radio, de réduction de l’impact environnementale ainsi que l’accroissement des capacités des systèmes de communications. Cependant, les techniques conventionnelles de formation de faisceaux entraînent souvent une augmentation significative de la taille de l’antenne. Par conséquent, l’intégration de tel système dans des petits appareils sans fil est relativement limitée. Les réseaux d’antennes compactes et superdirectifs constituent une solution innovante et attrayante pour surmonter ces problèmes. Néanmoins, ils présentent nombreux inconvénients notamment une faible efficacité de rayonnement, un très faible gain et une bande passante très étroite. Ces inconvénients limitent l'utilité des réseaux superdirectifs pour répondre aux besoins des technologies sans fil de nouvelles générations. Dans cette thèse, nous proposons de nouvelles méthodes d’optimisation multi-objectif, basées sur la théorie des modes caractéristiques (NCM), la théorie du facteur de réseau ainsi que les réseaux de neurones artificiels (RNA) pour la conception et le développement de nouvelles architectures antennaires compactes, superdirectives, efficaces et large bande pour des applications 5G.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|