|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Signal, image, vision
/ 02-05-2019
Snoussi Haykel
Voir le résumé
Voir le résumé
L'IRM quantitative a un potentiel énorme pour fournir une valeur intrinsèque et indirecte aux propriétés des tissus utiles au diagnostic, au pronostic et aux essais cliniques de la sclérose en plaques (SEP), qui est une maladie inflammatoire du système nerveux central. Complémentaire à l’imagerie cérébrale, étudier l’impact de la maladie sur la moelle épinière grâce à l’imagerie quantitative, en particulier l’IRM de diffusion, devient un véritable défi. L'acquisition et le traitement de ce type de données posent des problèmes inhérents en raison de la distorsion de susceptibilité, de la petite section transversale de la moelle et l’absence de repères anatomiques visibles qui permettant d'identifier des voies ou du niveau vertébral. Dans ce contexte, nous proposons plusieurs contributions pour le traitement et l'analyse statistique de ces données. Tout d'abord, nous proposons de nouvelles métriques géométriques pour évaluer et comparer différentes méthodes de correction de distorsion en mesurant l'alignement du modèle de diffusion reconstruit avec l'axe central apparent de la moelle épinière. Deuxièmement, en utilisant une cohorte de patients atteints de SEP et de témoins sains, nous étudions le lien entre les mesures de diffusion et la présence ou l'absence de lésion dans un niveau vertébral donné et nous montrons que nous pouvons prédire ce dernier avec une bonne précision en utilisant un apprentissage linéaire multivarié. Enfin, nous montrons la faisabilité d’une étude longitudinale de l’évolution des métriques d'IRM de diffusion en réalisant une étude de reproductibilité à l’aide d’un ensemble de données test-retest, et l’appliquons aux 2 premières acquisitions (M0 et M12) de notre cohorte de patients.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|