Voir le résumé
La demande pour des systèmes RF plus compacts avec des bandes plus larges a poussé l'exploration de bandes toujours plus hautes en fréquence forçant un transfert des technologies existantes et l'invention de nouvelles pour ces bandes. Parmi les principaux obstacles rencontrés dans cet effort, se trouvent le problème du confinement de champ, les pertes diélectriques importantes, et les difficultés d'intégration entre deux systèmes conçus avec une technologie différente. Afin de pallier à ces problèmes, plusieurs nouvelles technologies sont apparues durant ces deux dernières décennies. Une des plus prometteuse est le guide d'onde intégré au substrat (ou SIW pour Substrate Integrated Waveguide). Sa caractéristique principale est la possibilité d'intégrer les guides d'onde dans un substrat, le plus souvent en intégrant des cylindres métalliques ou diélectriques densément disposés, dans un substrat dont les faces, inférieure et supérieure, sont hautement conductrices. Cette technologie offre une liberté sans précédent à la gamme de systèmes pouvant être réalisés. La richesse de possibilités de designs, la robustesse et la solidité des performances ont conduit à un nombre très larges de systèmes SIW, certains d'entre eux trouvant place dans des applications commerciales. L'inconvénient de cette technologie provient du très grand nombre d'élément nécessaire et de la complexité de son agencement. Par conséquent, ils présentent un défi du point de vue d'un concepteur, nécessitant des analyses numériques et des optimisations. Les solveurs les plus couramment utilisés à cette fin sont basés sur la FÉM, la FDTD / FDFD et MoM, ou sur une fusion de plusieurs méthodes. Bien qu'ils soient à la hauteur pour une vaste gamme de structures, les plus rapides et plus précis sont très recherchés. Cette thèse porte sur une méthode numérique hybride adaptée à l'analyse d'une vaste gamme de structures SIW planaires. Elle repose sur une représentation efficace des champs dans des guides d'ondes à parois parallèles, chargés avec des diélectriques planaires simples ou multicouches contenant des cylindres ; elle permet la construction de systèmes linéaires dont les solutions donnent les amplitudes de champ post-dispersion. Ce problème est ce que nous appelons le mode-matching, et fournit des moyens de calcul rapide de champ en présence de cylindres métalliques et diélectriques. Étant donné qu'une part importante de ces dispositifs utilise des fentes rectangulaires étroites comme éléments de couplage et de rayonnement, nous proposons une approche basée sur les MoM pour leur analyse. Grâce à l'application du principe d'équivalence, chaque fente remplacée par des courants magnétiques équivalents; la procédure divise efficacement le problème le plus large en plusieurs plus petits, chacun appartenant à une région délimitée par des plaques PEC parallèles (un seul guide d'ondes à plans parallèles). En exerçant les conditions aux limites sur les surfaces des fentes et en effectuant la pondération Galerkin, on obtient un système linéaire dont les solutions sont les amplitudes des courants magnétiques. De là, nous procédons au calcul des quantités pertinentes telles que les paramètres S, Y et Z. Nous fournissons des critères empiriques pour choisir le nombre de modes / fonctions de base suffisantes pour une grande précision. En outre, nous présentons des techniques d'approximation et montrons comment exploiter les symétries inhérentes à des dispositifs SIW afin d'accélérer encore plus la méthode. Nous présentons les résultats de l'analyse de plusieurs structures SIW, obtenus par notre code en interne sur la base de la méthode exposée ici, et les comparons à ceux obtenus avec un solveur commercial standard. Les résultats obtenus montrent une excellente précision et efficacité de la méthode proposée. Le facteur d'accélération, la robustesse et la généralité en font un outil attrayant pour être utilisé dans la conception et l'optimisation des dispositifs SIW.