|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 02-09-2022
Roulley Emeric
Voir le résumé
Voir le résumé
Nous étudions l'existence de poches de tourbillon quasi-périodiques en temps pour les équations d'Euler et les équations quasi-geostrophic shallow-water (QGSW) qui sont deux modèles de transport non-linéaires et non-locaux bidimensionnels. Les poches sont des solutions faibles de la classe de Yudovich décrites par l'évolution de domaines planaires dont l'étude repose sur la dynamique de leur bord. Tout domaine initial radial fournit une solution stationnaire et il est naturel de se demander si l'on peut trouver, proche de ses points d'équilibre, des solutions périodiques ou quasi-périodiques. Le premier cas a été largement étudié par le passé via des techniques de bifurcation, et nous apportons ici un résultat dans cette lignée pour le cas des poches doublement-connexe en rotation uniforme pour les équations QGSW. Le second cas est moins évident et constitue le noyau dur de cette thèse. En utilisant les théories de KAM et de Nash-Moser, nous montrons que quitte à choisir un paramètre dans un ensemble admissible de type Cantor et de mesure presque pleine, il est possible de générer des poches quasi-périodiques proches des tourbillons de Rankine ; solutions stationnaires associées aux disques. Pour les équations QGSW, le rayon de Rossby joue le rôle de ce paramètre qui apparaît naturellement dans les équations. Pour les équations d'Euler dans le disque unité, la non-invariance par dilatation du modèle permet de créer un paramètre géométrique : le rayon des tourbillons de Rankine.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|