|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 16-10-2017
Rogue Axel
Voir le résumé
Voir le résumé
Cette thèse concerne les propriétés dynamiques des endomorphismes holomorphes du plan projectif complexe. La première partie introduit et minore les dimensions directionnelles du courant de Green. Nos résultats mènent une analyse multifractale des tranches de ce courant par des coordonnées locales, relativement aux mesures ergodiques dilatantes. Une première application montre que, relativement à toute mesure ergodique de grande entropie, tout courant positif fermé possède une dimension directionnelle strictement plus grande que deux, ce qui répond à une question de de Thélin-Vigny. Comme deuxième application, nous décrivons les dimensions directionnelles du courant de Green des endomorphismes semi-extrémaux de Dujardin, c'est à dire ceux dont la mesure d'équilibre est absolument continue par rapport à la mesure trace du courant de Green. Dans la deuxième partie, nous majorons les dimensions directionnelles du courant de Green en utilisant des techniques de Théorie du pluripotentiel. En combinant ces résultats à ceux de la première partie, nous montrons une propriété de séparation des dimensions directionnelles du courant de Green relativement à la mesure d'équilibre. Dans la dernière partie, nous étudions la régularité des tranches du courant de Green dans deux situations semi-extrémales. Nous montrons que la dérivée de Radon-Nikodym des tranches stables est bornée presque partout. Cette propriété, proche de l'absolue continuité par rapport à la mesure de Lebesgue, apporte une précision à nos résultats précédents. Les techniques utilisées ont également permis d'obtenir une nouvelle majoration de la dimension locale des mesures ergodiques dilatantes. Cette majoration nous rapproche de la conjecture de Binder-DeMarco concernant la dimension de la mesure d'équilibre.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|