|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Génétique, génomique et bioinformatique
/ 13-06-2019
Poirier Canelle
Voir le résumé
Voir le résumé
Depuis plusieurs années, la notion de Big Data s'est largement développée. Afin d'analyser et explorer toutes ces données, il a été nécessaire de concevoir de nouvelles méthodes et de nouvelles technologies. Aujourd'hui, le Big Data existe également dans le domaine de la santé. Les hôpitaux en particulier, participent à la production de données grâce à l'adoption du dossier patient électronique. L'objectif de cette thèse a été de développer des méthodes statistiques réutilisant ces données afin de participer à la surveillance syndromique et d'apporter une aide à la décision. Cette étude comporte 4 axes majeurs. Tout d'abord, nous avons montré que les données massives hospitalières étaient très corrélées aux signaux des réseaux de surveillance traditionnels. Dans un second temps, nous avons établi que les données hospitalières permettaient d'obtenir des estimations en temps réel plus précises que les données du web, et que les modèles SVM et Elastic Net avaient des performances comparables. Puis, nous avons appliqué des méthodes développées aux Etats-Unis réutilisant les données hospitalières, les données du web (Google et Twitter) et les données climatiques afin de prévoir à 2 semaines les taux d'incidence grippaux de toutes les régions françaises. Enfin, les méthodes développées ont été appliquées à la prévision à 3 semaines des cas de gastro-entérite au niveau national, régional, et hospitalier.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|