Voir le résumé
Dans cette thèse, nous nous intéressons à la détection de concepts sémantiques dans des films "Hollywoodiens" à l'aide de concepts audio et vidéos, dans le cadre applicatif de la détection de violence. Nos travaux se portent sur deux axes : la détection de concepts audio violents, tels que les coups de feu et les explosions, puis la détection de violence, dans un premier temps uniquement fondée sur l'audio, et dans un deuxième temps fondée sur l'audio et la vidéo. Dans le cadre de la détection de concepts audio, nous mettons tout d'abord un problème de généralisation en lumière, et nous montrons que ce problème est probablement dû à une divergence statistique entre les attributs audio extraits des films. Nous proposons pour résoudre ce problème d'utiliser le concept des mots audio, de façon à réduire cette variabilité en groupant les échantillons par similarité, associé à des réseaux Bayésiens contextuels. Les résultats obtenus sont très encourageants, et une comparaison avec un état de l'art obtenu sur les même données montre que les résultats sont équivalents. Le système obtenu peut être soit très robuste vis-à-vis du seuil appliqué en utilisant la fusion précoce des attributs, soit proposer une grande variété de points de fonctionnement. Nous proposons enfin une adaptation de l'analyse factorielle développée dans le cadre de la reconnaissance du locuteur, et montrons que son intégration dans notre système améliore les résultats obtenus. Dans le cadre de la détection de violence, nous présentons la campagne d'évaluation MediaEval Affect Task 2012, dont l'objectif est de regrouper les équipes travaillant sur le sujet de la détection de violence. Nous proposons ensuite trois systèmes pour détecter la violence, deux fondés uniquement sur l'audio, le premier utilisant une description TF-IDF, et le second étant une intégration du système de détection de concepts audio dans le cadre de la détection violence, et un système multimodal utilisant l'apprentissage de structures de graphe dans des réseaux bayésiens. Les performances obtenues dans le cadre des différents systèmes, et une comparaison avec les systèmes développés dans le cadre de MediaEval, montrent que nous sommes au niveau de l'état de l'art, et révèlent la complexité de tels systèmes.