|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 11-12-2015
Pawilowski Boris
Voir le résumé
Voir le résumé
Dans une série de travaux Zied Ammari et Francis Nier ont développé des méthodes pour étudier la dynamique de champ moyen bosonique pour des états quantiques généraux pouvant présenter des corrélations. Ils ont obtenu des formules pour décrire la dynamique des corrélations, ou plus généralement des matrices densité réduites d'ordre arbitraire. Cette thématique a été largement développée ces dernières années. Norbert Mauser en a été un des contributeurs, ainsi que sur la notion de mesure de Wigner qui est la clé de l'analyse développée par Z. Ammari et F. Nier. En général, il est admis que l'asymptotique de champ moyen est une bonne approximation du problème à N particules quand N dépasse la dizaine. Cela concerne l'asymptotique de la matrice densité réduite à une particule qui ne décrit pas la dynamique des corrélations. Un objectif est de tester la validité de la dynamique de champ moyen pour les matrices densité réduites à 2-particules. Pour des tests numériques, les modèles discrets qui n'ont pas été vraiment traités en détail dans les travaux précédents de Z. Ammari et F. Nier semblent bien adaptés. La thèse comprendra donc plusieurs étapes: adapter les résultats précédents de Z. Ammari et F. Nier à des modèles discrets , développer des méthodes numériques pour des systèmes simples mais pertinents, permettant de valider l'approximation de champ moyen et les formules pour la dynamique des corrélations. Au niveau numérique, on utilise des schémas numériques symplectiques, développés spécifiquement ces dernières années pour la discrétisation des équations hamiltoniennes. Une dernière étape concerne la combinaison des deux asymptotiques, champ moyen et approximation des modèles continus par les modèles discrets.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|