Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Toutes les thèses > Par auteur
Nouveautés
Par date
Par auteur
Toutes les thèses -> Auteurs
Auteurs
>
O
>
Ourmières-Bonafos Thomas
Niveau supérieur
1
ressource a été trouvée.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Tri :
Date
Titre
Auteur
Quelques asymptotiques spectrales pour le Laplacien de Dirichlet : triangles, cônes et couches coniques
Mathématiques et applications / 01-10-2014
Ourmières-Bonafos Thomas
Voir le résumé
Voir le résumé
Cette thèse est consacrée à l'étude du spectre de l'opérateur de Laplace avec conditions de Dirichlet dans différents domaines du plan ou de l'espace. Dans un premier temps on s'intéresse à des triangles asymptotiquement plats et des cônes de petite ouverture. Ces problèmes admettent une reformulation semi-classique et nous donnons des développements asymptotiques à tout ordre des premières valeurs et fonctions propres. Ce type de résultat est déjà connu pour des domaines minces à profil régulier. Pour les triangles et les cônes, on prouve que le problème admet maintenant deux échelles. Dans un second temps, on étudie une famille de couches coniques indexées par leur ouverture. Là encore, on s'intéresse à la limite semi-classique quand l'ouverture tend vers zéro: on donne un développement asymptotique à deux termes des premières valeurs propres et on démontre un résultat de localisation des fonctions propres associées. Nous donnons également, à ouverture fixée, un équivalent du nombre de valeurs propres sous le seuil du spectre essentiel.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
© 2016
|
MENTIONS LEGALES
|
PLUS D'INFORMATION