|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 03-11-2015
Oudet Salomé
Voir le résumé
Voir le résumé
Cette thèse porte sur l'étude de problèmes de contrôle optimal sur des réseaux (c'est-à-dire des ensembles constitués de sous-régions reliées entre elles par des jonctions), pour lesquels on autorise différentes dynamiques et différents coûts instantanés dans chaque sous-région du réseau. Comme dans les cas plus classiques, on aimerait pouvoir caractériser la fonction valeur d'un tel problème de contrôle par le biais d'une équation de Hamilton-Jacobi-Bellman. Cependant, les singularités géométriques du domaine, ainsi que les discontinuités des données ne nous permettent pas d'appliquer la théorie classique des solutions de viscosité. Dans la première partie de cette thèse nous prouvons que les fonctions valeurs de problèmes de contrôle optimal définis sur des réseaux 1-dimensionnel sont caractérisées par de telles équations. Dans la seconde partie les résultats précédents sont étendus au cas de problèmes de contrôle définis sur une jonction 2-dimensionnelle. Enfin, dans une dernière partie, nous utilisons les résultats obtenus précédemment pour traiter un problème de perturbation singulière impliquant des problèmes de contrôle optimal dans le plan pour lesquels les dynamiques et les coûts instantanés peuvent être discontinus à travers une frontière oscillante.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|