Voir le résumé
Une onde électromagnétique est définie par son amplitude, son vecteur d'onde, sa fréquence et son moment angulaire. Ce dernier peut être séparé en deux parties : la polarisation (associée au moment angulaire de spin), et le moment angulaire orbital. Ce dernier n'a vraiment été étudié qu'à partir de ces dernières années. Cette thèse a pour but d'approfondir les connaissances sur ce moment angulaire orbital. Des prototypes ont ainsi été réalisés, et des outils d'analyse ont été développés. Dans un premier temps, une étude du transfert de ce moment angulaire orbital à un objet macroscopique, à la fréquence de 870 MHz, est présentée. Une interprétation du mécanisme de transfert est ensuite proposée, supportée par le calcul des équations de champs et des simulations électromagnétiques. Dans un second temps, la conception et la réalisation de deux antennes, pouvant générer une onde possédant un moment angulaire orbital, sont présentées. Ces deux antennes utilisent une lame de phase avec une loi à dépendance angulaire. La première est une lame de phase dite « spirale », à permittivité constante et à hauteur variable. La seconde est une lame à gradient d'indice, à permittivité variable et à hauteur constante. Ces deux antennes ont été simulées, puis mesurées au sein de la chambre anéchoïque CHEOPS (DGA-MI, Bruz). Des cartographies sur un plan du champ ont ainsi été obtenues. Dans un dernier temps, la réflexion sur des surfaces courbes et planes, et l'influence de l'échantillonnage sur l'estimation des modes d'OAM, ont été étudiées. En ce qui concerne la réflexion, les résultats de simulations sont prometteurs, et semblent indiquer l'existence d'une relation entre les déformations du faisceau réfléchi et le type de surface. Pour l'estimation des modes d'OAM, les valeurs de champs sont extraites sur un cercle. Différents paramètres (positionnement et rayon du cercle) ont été considérés, et une méthode d'estimation des modes d'OAM sur une large bande de fréquence est proposée.