|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 05-12-2019
Morvan Marie
Voir le résumé
Voir le résumé
Dans de nombreux domaines d’application, les données récoltées correspondent à des courbes. Ce travail se concentre sur l’analyse de courbes de spectrométrie, constituées de plusieurs centaines de variables ordonnées, correspondant chacune à une valeur d’absorbance associée aux nombres d’ondes mesurés. Dans ce contexte, une méthode de traitement statistique automatique est développée, avec pour objectif la construction d’un modèle de prédiction prenant en compte l’hétérogénéité des données observées. Plus particulièrement, un modèle de diagnostic d’une maladie métabolique est établi à partir de courbes mesurées sur des individus provenant d’une population constituée de profils de patients différents. La procédure développée permet de sélectionner l’information pertinente sous forme de portions de courbes discriminantes, puis de construire de façon simultanée une partition des données et un modèle de prédiction parcimonieux grâce à un mélange de régressions pénalisées adapté aux données fonctionnelles. Ces données étant complexes, tout comme le cas d’application étudié, une méthode permettant une meilleure compréhension et une meilleure visualisation des interactions entre les portions de courbes a par ailleurs été développée. Cette méthode se base sur l’étude de la structure des matrices de covariance, avec pour but de faire ressortir des blocs de dépendances entre intervalles de variables. Un cas d’application médicale est utilisé pour présenter la méthode et les résultats, et permet l’utilisation d’outils de visualisation spécifiques.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|