Voir le résumé
La thèse est principalement centrée sur l'étude de la résolution verticale des diagraphies. On outre, l'arithmétique floue est appliquée aux modèles expérimentaux pétrophysiques en vue de transmettre l'incertitude des données d'entrée aux données de sortie, ici la saturation irréductible en eau et la perméabilité. Les diagraphies sont des signaux digitaux dont les données sont des mesures volumétriques. Le mécanisme d'enregistrement de ces données est modélisé par des fonctions d'appartenance floues. On a montré que la Résolution Verticale de la Fonction d'Appartenance (VRmf) est supérieur d'espacement. Dans l'étape suivante, la fréquence de Nyquist est revue en fonction du mécanisme volumétrique de diagraphie ; de ce fait, la fréquence volumétrique de Nyquist est proposée afin d'analyser la précision des diagraphies. Basé sur le modèle de résolution verticale développée, un simulateur géométrique est conçu pour générer les registres synthétiques d'une seule couche mince. Le simulateur nous permet d'analyser la sensibilité des diagraphies en présence d'une couche mince. Les relations de régression entre les registres idéaux (données d'entrée de ce simulateur) et les registres synthétiques (données de sortie de ce simulateur) sont utilisées comme relations de déconvolution en vue d'enlever l'effet des épaules de couche d'une couche mince sur les diagraphies GR, RHOB et NPHI. Les relations de déconvolution ont bien été appliquées aux diagraphies pour caractériser les couches minces. Par exemple, pour caractériser une couche mince poreuse, on a eu recours aux données de carottage qui étaient disponibles pour la vérification : NPHI mesuré (3.8%) a été remplacé (corrigé) par 11.7%. NPHI corrigé semble être plus précis que NPHI mesuré, car la diagraphie a une valeur plus grande que la porosité de carottage (8.4%). Il convient de rappeler que la porosité totale (NPHI) ne doit pas être inférieure à la porosité effective (carottage). En plus, l'épaisseur de la couche mince a été estimée à 13±7.5 cm, compatible avec l'épaisseur de la couche mince dans la boite de carottage (<25 cm). Normalement, l'épaisseur in situ est inférieure à l'épaisseur de la boite de carottage, parce que les carottes obtenues ne sont plus soumises à la pression lithostatique, et s'érodent à la surface du sol. La DST est appliquée aux diagraphies, et l'intervalle d'incertitude de DST est construit. Tandis que la VRmf des diagraphies GR, RHOB, NPHI et DT est ~60 cm, la VRmf de l'intervalle d'incertitude est ~15 cm. Or, on a perdu l'incertitude de la valeur de diagraphie, alors que la VRmf est devenue plus précise. Les diagraphies ont été ensuite corrigées entre l'intervalle d'incertitude de DST avec quatre simulateurs. Les hautes fréquences sont amplifiées dans les diagraphies corrigées, et l'effet des épaules de couche est réduit. La méthode proposée est vérifiée dans les cas synthétiques, la boite de carottage et la porosité de carotte. L'analyse de partitionnement est appliquée aux diagraphies NPHI, RHOB et DT en vue de trouver l'intervalle d'incertitude, basé sur les grappes. Puis, le NPHI est calibré par la porosité de carottes dans chaque grappe. Le √MSE de NPHI calibré est plus bas par rapport aux cinq modèles conventionnels d'estimation de la porosité (au minimum 33% d'amélioration du √MSE). Le √MSE de généralisation de la méthode proposée entre les puits voisins est augmenté de 42%. L'intervalle d'incertitude de la porosité est exprimé par les nombres flous. L'arithmétique floue est ensuite appliquée dans le but de calculer les nombres flous de la saturation irréductible en eau et de la perméabilité. Le nombre flou de la saturation irréductible en eau apporte de meilleurs résultats en termes de moindre sous-estimation par rapport à l'estimation nette. Il est constaté que lorsque les intervalles de grappes de porosité ne sont pas compatibles avec la porosité de carotte, les nombres flous de la perméabilité ne sont pas valables.