|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 25-06-2012
Marchand Jean-Louis
Voir le résumé
Voir le résumé
Le but de cette thèse est de décrire la loi conditionnelle d'un processus markovien multidimensionnel connaissant la valeur de certaines combinaisons linéaires de ses coordonnées à des instants donnés. La description recherchée consiste à mettre en évidence un processus de même type, facile à simuler, dont la loi est équivalente à la loi conditionnelle ciblée.La classe principalement étudiée est celle des processus à diffusion. Dans un premier temps, des techniques de grossissement de filtration (Jacod 1985) permettent de déterminer les paramètres de l'équation différentielle stochastique vérifiée par le processus conditionnel. Cependant, on s'aperçoit alors que la dérive n'est pas explicite, car celle-ci dépend des densités de transition du processus initial, inconnues en général. Ceci rend impossible,une simulation directe par exemple à l'aide d'un schéma d'Euler. Afin de pallier ce défaut, nous proposons une alternative, dans l'esprit de Delyon et Hu (2006). L'approche consiste à proposer une équation différentielle stochastique de paramètres explicites, dont la solution est de loi équivalente à la loi conditionnelle. Une application en collaboration avec Anne Cuzol et Etienne Mémin de l'INRIA, dans le cadre des écoulements fluides est également présentée. On applique la méthode proposée précédemment à un modèle stochastique inspiré des équations de Navier-Stokes. Enfin, la classe des processus markoviens à sauts est également abordée.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|