|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Physique
/ 21-12-2023
Mandal Ritwika
Voir le résumé
Voir le résumé
Ces dernières années, avec le développement du laser ultrarapide et intense, des opportunités sans précédent sont apparues pour modifier les propriétés macroscopiques des matériaux de manière efficace et ultra-rapide. Les techniques d’analyse avancées, en particulier la diffraction des rayons X en temps résolue, permettent de sonder la structure des matériaux photo-excités avec les résolutions temporelles adéquates, des échelles de temps sous-ps a la microseconde et au-delà. Cette étude se focalise principalement sur les systèmes électroniques corrélés, les composes de T i 3 O 5 et V 2 O 3 . Il a été démontré récemment que la transformation macroscopique dans des matériaux photo-excitables a changement de volume suit l’onde de déformation. Ici, nous avons cherché à comprendre ce mécanisme d’ondes de déformations dans les systèmes électroniques corrélés en étudiant deux systèmes présentant des changements de volume de différents types au cours de la transition de phase. La transition de phase semi-conducteur (β) à métal (λ) dans T i 3 O 5 est associée à un changement de volume significatif. V 2 O 3 , d’autre part, subit à la fois une contraction de volume et un changement de symétrie lors de la transition isolant (AFI) -métal (PM). Une partie de ce travail de doctorat est consacrée au mécanisme de commutation à l’échelle de la nanoseconde dans T i 3 O 5 . Sur ces échelles de temps, la transition de la phase β- à λ se propage à l’intérieur et à travers les joints de grains (entre les nanocristaux). Nous montrons que cette dynamique dépend de la taille des nanocristaux. Nous étudions cette croissance de la phase photoinduite lors de la dissipation de la chaleur et recherchons des corrélations entre ce processus lent et les la forme des domaines nanoscopiques résultant de la transition induite par l’onde de déformation, se produisant sur une échelle de temps ultra-rapide. Les résultats sont rationalisés par une simulation numérique basée sur un modèle 2D de diffusion de chaleur, qui cartographie la distribution de phase dans ces échantillons polycristallins. Dans V 2 O 3 , la dynamique ultrarapide est régie par la propagation des déformations longitudinales dans l’épaisseur du film et par les déformations de cisaillement au sein des cristallites. Grâce a la morphologie des échantillons et a la photo-excitation homogène, aucune réponse lente n’est observé dans ce cas. Notre étude structurale à un délai de 100 ps après la photo-excitation montre une séparation de phase à une fluence laser au delà d’une fluence seuil, et une transformation complète au delà de la fluence de saturation.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|