|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 12-09-2014
Maistre Samuel
Voir le résumé
Voir le résumé
Dans cette thèse, nous étudions des tests du type : (H0) : E [U | X] = 0 p.s. contre (H1) : P {E [U | X] = 0} < 1 où U est le résidu de la modélisation d'une variable Y en fonction de X. Dans ce cadre et pour plusieurs cas particuliers – significativité de variables, régression quantile, données fonctionnelles, modèle single-index –, nous proposons une statistique de test permettant d'obtenir des valeurs critiques issues d'une loi asymptotique pivotale. Dans chaque cas, nous donnons également une méthode de bootstrap appropriée pour les échantillons de petite taille. Nous montrons la consistance envers des alternatives locales – ou à la Pitman – des tests proposés, lorsque ce type d'alternative ne tend pas trop vite vers l'hypothèse nulle. À chaque fois, nous vérifions à partir de simulations sous l'hypothèse nulle et sous une séquence d'hypothèses alternatives que les résultats théoriques sont en accord avec la pratique.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|