|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 27-06-2022
Luirard Emeline
Voir le résumé
Voir le résumé
Nous étudions, dans cette thèse, le comportement asymptotique de solutions de systèmes cinétiques inhomogènes, dirigés par un processus de Lévy. Plus précisément, on s'intéresse à la dynamique d'une particule, évoluant dans un potentiel, et soumise à la fois à une force de frottement F et à une force extérieure aléatoire L. La force F est attractive et vérifie des propriétés d'invariance d'échelle. Elle est altérée par la présence d'un facteur inhomogène en temps. La première partie de ce manuscrit correspond à l'étude du système en l'absence de potentiel confinant, tandis que la seconde s'intéresse à la présence d'un potentiel quadratique. L'enjeu est de comprendre comment interagissent les différentes forces afin de montrer que le processus vitesse-position, correctement renormalisé, admet une limite en loi explicite.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|