Voir le résumé
Les polymères synthétiques conventionnels sont omniprésents dans la société moderne en raison de leurs nombreuses caractéristiques avantageuses : légèreté, coût relativement faible, durabilité et diverses propriétés thermomécaniques. Il est largement reconnu que l'utilisation de polymères d'origine fossile est à l'origine de problèmes environnementaux majeurs d'origine anthropique, tels que la pollution plastique et le changement climatique. Une alternative intéressante aux plastiques classiques (polyoléfines) issus de ressources fossiles est l'utilisation de plastiques (bio)dégradables, notamment ceux issus de ressources naturelles renouvelables. Parmi ces polymères (bio)dégradables, les poly(β-hydroxyalcanoate)s (PHAs), qui peuvent être préparés chimiquement par polymérisation par ouverture de cycle (ROP) des β-lactones correspondantes, présentent un intérêt tout particulier. Cependant, l'inconvénient intrinsèque des PHAs, à savoir leur manque de diversités fonctionnelle, limite leur gamme d'application. Les modifications des PHAs au niveau de leurs groupements pendants et de leur squelette, permettent d'accéder à des polymères présentant des propriétés physico-chimiques différentes et ajustables, offrant ainsi diverses stratégies pour élargir leur champ d’applications. Dans la première partie bibliographique de ce manuscrit, la préparation de poly(thio)esters stéréoréguliers par ROP des monomères correspondants, telle que rapportée dans la littérature, est résumée de manière approfondie et systématique. Par la suite, sur la base des travaux précédents réalisés dans le groupe et pour mieux comprendre les facteurs qui contrôlent la stéréosélectivité, nous avons conçu une nouvelle β-lactone fonctionnelle racémique, à savoir la 4-(2-(benzyloxy)éthyl)oxétan-2-one qui diffère "simplement" de la 4-benzyloxyméthyl-β-propiolactone racémique monomère étudiée précédemment par le remplacement dans le groupe latéral (exocyclique) de l’entité méthylènyle par un éthylènyle, afin d'évaluer la ROP stéréosélective médiée par l'utilisation de complexes d'yttrium. Les meilleures activités catalytiques ont été atteintes en utilisant les complexes d'yttrium avec les substituants "encombrés" installés sur le ligand bisphénolate (par ex, tBu, CMe2Ph), donnant des polymères syndiotactiques enrichis (Pr jusqu'à 0,86), tandis que les complexes d'yttrium incorporant un ligand halogéné "non encombré", tel que Cl, ont conduit à des polymères atactiques, suggérant que les "interactions non covalentes" n'étaient pas en jeu pendant la polymérisation, contrairement à ce qui a été observé dans nos études précédentes. De plus, l'introduction d'atomes de soufre dans le squelette du plus simple des PHAs, le poly(3-hydroxybutyrate) (P3HB), a également été étudiée au travers de la ROP de la β-thiobutyrolactone racémique (rac-TBL) avec une variété d’amorceurs/catalyseurs de type anionique. Parmi ceux-ci, les complexes tétradentés de type amino-alkoxy-bis(phénolate) d'yttrium ont donné les résultats les plus prometteurs en termes d'activité et de contrôle de la microstructure macromoléculaire, notamment en termes de stéréosélectivité. Il s'agit du premier exemple d'une ROP hautement stéréosélective d'une thiolactone chirale racémique offrant sélectivement des polymères (poly(3-thiobutyrate, P3TB) cycliques, soit hautement isotactiques, soit hautement syndiotactiques. Enfin, des résultats préliminaires sur des essais de copolymérisation par ouverture de cycle entre le rac-TBL et la rac-β-butyrolactone catalysée par des complexes d'yttrium et sur la ROP de rac-TBL initiée par des organocatalyseurs de type phosphazène sont également documentés.