|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Informatique
/ 18-12-2018
Leslous Mourad
Voir le résumé
Voir le résumé
Les smartphones sont devenus omniprésents dans notre vie quotidienne à cause des options qu'ils proposent. Aujourd'hui, Android est installé sur plus de 80% des smartphones. Les applications mobiles recueillent une grande quantité d'informations sur l'utilisateur. Par conséquent, Android est devenu une cible préférée des cybercriminels. Comprendre le fonctionnement des malwares et comment les détecter est devenu un défi de recherche important. Les malwares Android tentent souvent d'échapper à l'analyse statique en utilisant des techniques telles que l'obfuscation et le chargement dynamique du code. Des approches d'analyse ont été proposées pour exécuter l'application et surveiller son comportement. Néanmoins, les développeurs des malwares utilisent des bombes temporelles et logiques pour empêcher le code malveillant d'être exécuté sauf dans certaines circonstances. Par conséquent, plus d'actions sont requises pour déclencher et surveiller leurs comportements. Des approches récentes tentent de caractériser automatiquement le comportement malveillant en identifiant les endroits du code les plus suspicieux et en forçant leur exécution. Elles se basent sur le calcul des graphes de flot de contrôle (CFG) qui sont incomplets, car ils ne prennent pas en considération tous les types de chemins d'exécution. Ces approches analysent seulement le code d'application et ratent les chemins d'exécution générés quand l'application appelle une méthode du framework, qui appelle à son tour une autre méthode applicative. Nous proposons GPFinder, un outil qui extrait automatiquement les chemins d'exécution qui mènent vers les endroits suspicieux du code, en calculant des CFG qui incluent les appels interprocéduraux explicites et implicites. Il fournit aussi des informations clés sur l'application analysée afin de comprendre comment le code suspicieux a été injecté dans l'application. Pour valider notre approche, nous utilisons GPFinder pour étudier une collection de 14224 malwares Android. Nous évaluons que 72,69% des échantillons ont au moins un endroit suspicieux du code qui n'est atteignable qu'à travers des appels implicites. Les approches de déclenchement actuelles utilisent principalement deux stratégies pour exécuter une partie du code applicatif. La première stratégie consiste à modifier l'application excessivement pour lancer le code ciblé sans faire attention à son contexte originel. La seconde stratégie consiste à générer des entrées pour forcer le flot de contrôle à prendre le chemin désiré sans modifier le code d'application. Cependant, il est parfois difficile de lancer un endroit spécifique du code seulement en manipulant les entrées. Par exemple, quand l'application fait un hachage des données fournies en entrée et compare le résultat avec une chaîne de caractères fixe pour décider quelle branche elle doit prendre. Clairement, le programme de manipulation d'entrée devrait inverser la fonction de hachage, ce qui est presque impossible. Nous proposons TriggerDroid, un outil qui a deux buts : forcer l'exécution du code suspicieux et garder le contexte originel de l'application. Il fournit les événements framework requis pour lancer le bon composant et satisfait les conditions nécessaires pour prendre le chemin d'exécution désiré. Pour valider notre approche, nous avons fait une expérience sur 135 malwares Android de 71 familles différentes. Les résultats montrent que notre approche nécessite plus de raffinement et d'adaptation pour traiter les cas spéciaux dus à la grande diversité des échantillons analysés. Finalement, nous fournissons un retour sur les expériences que nous avons conduites sur différentes collections, et nous expliquons notre processus expérimental. Nous présentons le dataset Kharon, une collection de malwares Android bien documentés qui peuvent être utilisés pour comprendre le panorama des malwares Android.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|