Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Thèses de doctorat > Par auteur
Nouveautés
Par thématique
Par laboratoire
Par date
Par auteur
Thèses de doctorat -> Auteurs
Auteurs
>
L
>
Lecompte Lolita
Niveau supérieur
1
ressource a été trouvée.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Tri :
Date
Titre
Auteur
Structural variant genotyping with long read data
Informatique / 04-12-2020
Lecompte Lolita
Voir le résumé
Voir le résumé
Les variants de structure (SVs) sont des réarrangements génomiques de plus de 50 paires de base et restent encore aujourd'hui peu étudiés malgré les impacts importants qu'ils peuvent avoir sur le fonctionnement des génomes. Récemment, les technologies de séquençage de troisième génération ont été développées et produisent des données de longues lectures qui s'avèrent très utiles car elles peuvent chevaucher les réarrangements. À l'heure actuelle, les méthodes bioinformatiques se sont concentrées sur le problème de la découverte de SVs avec des données de longues lectures. Aucune méthode n'a cependant été proposée pour répondre spécifiquement à la question du génotypage de SVs avec ce même type de données. L'objectif du génotypage de SVs vise pour un ensemble de SVs donné à évaluer les allèles présents dans un nouvel échantillon séquencé. Cette thèse propose une nouvelle méthode pour génotyper des SVs avec des longues lectures et repose sur la représentation des séquences des allèles. Notre méthode a été implémentée dans l'outil SVJedi. Nous avons testé notre outil à la fois sur des données simulées et réelles afin de valider notre méthode. SVJedi obtient une précision élevée qui dépasse les performances des autres outils de génotypage de SVs, notamment des outils de détection de SVs et des outils de génotypage de SVs de lectures courtes.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
© 2016
|
MENTIONS LEGALES
|
PLUS D'INFORMATION