|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 31-10-2014
Le Rudulier Cécile
Voir le résumé
Voir le résumé
L'étude de la répartition des points rationnels ou algébriques d'une variété algébrique selon leur hauteur est un problème classique de géométrie diophantienne. Dans cette thèse, nous nous intéresserons au cardinal asymptotique de l'ensemble des points algébriques de degré fixé et de hauteur bornée d'une variété lisse de Fano définie sur un corps de nombres, lorsque la borne sur la hauteur tend vers l'infini. En particulier nous montrerons que cette question peut-être reliée à la conjecture de Batyrev-Manin-Peyre, c'est-à-dire le cas des points rationnels, sur un schéma de Hilbert ponctuel. Nous en déduisons ainsi la distribution des points algébriques de degré fixé d'une courbe rationnelle. Lorsque la variété de départ est une surface lisse de Fano, notre étude montre que les schémas de Hilbert associés fournissent, sous certaines conditions, de nouveaux contre-exemples à la conjecture de Batyrev-Manin-Peyre. Néanmoins, pour deux surfaces que nous étudions en détail, les schémas de Hilbert associés vérifient une version légèrement affaiblie de la conjecture de Batyrev-Manin-Peyre.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|