Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Thèses de doctorat > Par auteur en fr
  • Nouveautés
  • Par thématique
  • Par laboratoire
  • Par date
  • Par auteur
Thèses de doctorat -> Auteurs
Auteurs > L > Le Meur Alexandre
Niveau supérieur
  • 1 ressource a été trouvée.
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Titre Auteur

Formules de Thomae généralisées à des courbes galoisiennes résolubles sur la droite projective


Mathématiques et applications / 31-08-2017
Le Meur Alexandre
Voir le résumé
Voir le résumé
Les formules de Thomae classiques (1869) permettent de relier au moyen d'une relation algébrique les points branches d'une courbe hyperelliptique avec les thêta constantes de sa jacobienne. Ces formules donnent notamment un moyen de calculer les thêta constantes d'une courbe hyperelliptique connaissant ses points de ramification ou bien, à l'inverse, de retrouver la courbe en connaissant le theta null point de sa jacobienne. Ceci fournit une réalisation effective du théorème de Torelli. Plus récemment, plusieurs auteurs dont Zemel et Farkas ont proposé une généralisation de ces formules pour des courbes cycliques totalement ramifiées sur la droite projective. Nous nous intéressons dans cette thèse à une généralisation de ces formules pour des courbes galoisiennes résolubles de degré n sur la droite projective. La construction de telles formules suit la stratégie décrite par Farkas et Zemel. Cependant, les points non totalement ramifiés ne décrivent pas des points de n-torsion de la Jacobienne de la courbe via l'application d'Abel-Jacobi. Pour remédier à cet obstacle, nous composons T par theta, où T agit comme une moyenne décrite par un sous-groupe du groupe de Galois de la courbe possédant certaines propriétés. Afin de décrire les zéros de translatés de cette application composée, nous écrivons un analogue du théorème de Riemann sur les zéros de theta. Enfin, nous exhibons un exemple d'une courbe définie par un revêtement de degré 2 suivi de deux revêtements de degré 3 dans laquelle on obtient des formules de Thomae généralisées.

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2016  |  MENTIONS LEGALES  |  PLUS D'INFORMATION