Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Toutes les thèses > Par auteur en fr
  • Nouveautés
  • Par date
  • Par auteur
Toutes les thèses  -> Auteurs
Auteurs > K > Kirchner Paul
Niveau supérieur
  • 1 ressource a été trouvée.
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Titre Auteur

Cryptanalysis of public-key cryptography


Informatique / 23-05-2025
Kirchner Paul
Voir le résumé
Voir le résumé
La cryptanalyse de schémas de cryptographie à clé publique repose sur un ensemble de techniques algorithmiques et algébriques en théorie des nombres. Dans une première partie de cette thèse, nous présentons des améliorations de l’algorithme LLL, dû à Lenstra, Lenstra et Lovasz pour réduire un réseau euclidien, c’est-à-dire réduire la norme et orthogonaliser le plus possible les vecteurs de la base. Nous montrons aussi comment utiliser cet algorithme pour réduire des réseaux modules en rang 2 dans un corps de nombres cyclotomique ayant des sous-corps. En effet, certains schémas comme NTRU ou Falcon, dont la sécurité repose sur ce problème difficile, ont été proposés en cryptographie post-quantique et pour du chiffrement homomorphe. Nous améliorons aussi les techniques d’algèbre linéaire creuse et proposons de meilleurs algorithmes lorsque la matrice est à diagonale dominante. Ces avancées nous permettent de réaliser de nouveaux records de calculs de corps de nombres : nombre de classes, générateurs du groupe des unités, générateur d’un idéal principal. Dans une seconde partie, nous étudions différents problèmes classiques en théorie des nombres : nous améliorons différents algorithmes pour tester la primalité d’un entier et en particulier, le test cyclotomique initialement proposé par Adleman et dernièrement développé par Mihailescu. Puis, nous étudions différents algorithmes dans un modèle dit de l’anneau en boîte noire, c’est-à-dire que nous étudions le nombre d’additions et de multiplications dans l’anneau, sans nous intéresser à la façon de représenter et de faire les calculs dans cet anneau. Ceci nous permet dans le dernier chapitre, d’instancier ces algorithmes en fonction de différents anneaux pour proposer des algorithmes efficaces en cryptanalyse. Ce faisant, nous sommes capables de distribuer plus facilement les calculs de tout l’algorithme, alors que les algorithmes dit de calcul d’indice utilisent une étape d’algèbre linéaire qu’il est difficile de paralléliser.

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2016  |  MENTIONS LEGALES  |  PLUS D'INFORMATION