Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Toutes les thèses > Par auteur en fr
  • Nouveautés
  • Par date
  • Par auteur
Toutes les thèses  -> Auteurs
Auteurs > K > Keraval Pierig
Niveau supérieur
  • 1 ressource a été trouvée.
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Titre Auteur

Formules de Weyl par réduction de dimension : application à des Laplaciens électromagnétiques


Mathématiques et leurs interactions / 20-12-2018
Keraval Pierig
Voir le résumé
Voir le résumé
La thèse consiste en l’étude spectrale d’opérateurs partiellement semi-classiques. Quand la géométrie du problème suggère une localisation anisotrope des fonctions propres associées aux basses énergies (bord du domaine, lieu d’annulation du champs magnétique), le développement local de l’opérateur amène naturellement à une structure à double échelle. Il s'agit, via un schéma de réduction "à la Born-Oppenheimer", utilisant le formalisme du calcul pseudodifférentiel pour des symboles à valeur opérateur, de montrer l’existence d’un opérateur effectif à symbole scalaire. On en déduit ensuite des formules de Weyl pour le comptage des basses valeurs propres. Cette stratégie est appliquée : au Laplacien de Robin sur un domaine borné, en dimension quelconque et au Laplacien magnétique dans R², dans le cas où le champ magnétique s’annule sur une courbe fermée.

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2016  |  MENTIONS LEGALES  |  PLUS D'INFORMATION