|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Informatique
/ 04-06-2018
Jain Himalaya
Voir le résumé
Voir le résumé
Cette thèse aborde le problème de la recherche d'images à grande échelle. Pour aborder la recherche d'images à grande échelle, il est nécessaire de coder des images avec des représentations compactes qui peuvent être efficacement utilisées pour comparer des images de manière significative. L'obtention d'une telle représentation compacte peut se faire soit en comprimant des représentations efficaces de grande dimension, soit en apprenant des représentations compactes de bout en bout. Le travail de cette thèse explore et avance dans ces deux directions. Dans notre première contribution, nous étendons les approches de quantification vectorielle structurée telles que la quantification de produit en proposant une représentation somme pondérée de codewords. Nous testons et vérifions les avantages de notre approche pour la recherche approximative du plus proche voisin sur les caractéristiques d'image locales et globales, ce qui est un moyen important d'aborder la recherche d'images à grande échelle. L'apprentissage de la représentation compacte pour la recherche d'images a récemment attiré beaucoup d'attention avec diverses approches basées sur le hachage profond proposées. Dans de telles approches, les réseaux de neurones convolutifs profonds apprennent à coder des images en codes binaires compacts. Dans cette thèse, nous proposons une approche d'apprentissage supervisé profond pour la représentation binaire structurée qui rappelle une approche de quantification vectorielle structurée telle que PQ. Notre approche bénéficie de la recherche asymétrique par rapport aux approches de hachage profond et apporte une nette amélioration de la précision de la recherche au même débit binaire. L'index inversé est une autre partie importante du système de recherche à grande échelle en dehors de la représentation compacte. À cette fin, nous étendons nos idées pour l'apprentissage de la représentation compacte supervisée pour la construction d'index inversés. Dans ce travail, nous abordons l'indexation inversée avec un apprentissage approfondi supervisé et essayons d'unifier l'apprentissage de l'indice inversé et de la représentation compacte. Nous évaluons minutieusement toutes les méthodes proposées sur divers ensembles de données accessibles au public. Nos méthodes surpassent ou sont compétitives avec l'état de l'art.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|