|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 19-12-2024
Hug Bérenger
Voir le résumé
Voir le résumé
Dans une première partie, à partir d’une équation d’évolution, on construit une famille de noyaux indexée par le temps qui permet de définir une famille d’espaces de fonctions (RKHS). On construit une famille d’opérateurs de Koopman qui permettent de passer d’un noyau initial (temps 0) au noyau au temps t. Pour décrire cet opérateur simplement, on cherche à diagonaliser un opérateur qui est relié. Dans une seconde partie, on montre que les équations stochastiques de Navier- Stokes LU qui dépendent d’un paramètre sur un ouvert borné en dimension 2 et 3 admettent des solutions faibles (solutions martingales), avec unicité en dimension 2. Puis on montre qu’une famille de solutions indexée par ce paramètre converge, lorsque ce paramètre tend vers 0, vers une solution de l’équation de Navier- Stokes déterministe. Dans une troisième partie, on fixe le paramètre précédent égal à 1, on souhaite voir une solution des équations de Navier-Stokes LU comme limite de solutions d’une nouvelle équation appelée Navier-Stokes avec advection aléatoire dépendant d’un paramètre.Pour cela on utilise la méthode de la fonction perturbée.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|