|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 09-12-2014
Horbez Camille
Voir le résumé
Voir le résumé
Soit G un groupe dénombrable, qui se scinde en un produit libre de la forme G=G_1*...*G_k*F, où F est un groupe libre de type fini, et les G_i sont librement indécomposables et non isomorphes à Z. Nous montrons que le groupe Out(G) des automorphismes extérieurs de G satisfait l'alternative de Tits, dès lors que chacun des groupes G_i et Out(G_i) la satisfait. Par des méthodes similaires, nous montrons aussi l'alternative suivante pour tout sous-groupe H de Out(F_N), due à Handel et Mosher lorsque H est de type fini : soit H fixe virtuellement la classe de conjugaison d'un facteur libre propre de F_N, soit H contient un automorphisme complètement irréductible. Nos méthodes, géométriques, utilisent l'étude de la dynamique de l'action de certains sous-groupes de Out(G) sur des espaces hyperboliques. Nous décrivons notamment l'adhérence de l'outre-espace de G relatif aux G_i, et le bord de Gromov du complexe (hyperbolique) des scindements cycliques relatifs associé. Nous étudions par ailleurs les marches aléatoires sur Out(F_N). Sous un certain nombre de conditions sur la mesure de probabilité mu, nous montrons que presque toute trajectoire de la marche aléatoire sur (Out(F_N),mu) converge vers un point du bord de Gromov du complexe des facteurs libres de F_N, que nous identifions au bord de Poisson de (Out(F_N),mu). Par ailleurs, nous décrivons l'horofrontière de l'outre-espace. Ceci a des applications à l'étude de la croissance des classes de conjugaison de F_N sous l'effet de produits aléatoires d'automorphismes extérieurs.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|