Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Thèses de doctorat > Par auteur
Nouveautés
Par thématique
Par laboratoire
Par date
Par auteur
Thèses de doctorat -> Auteurs
Auteurs
>
H
>
Hibon Hélène
Niveau supérieur
1
ressource a été trouvée.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Tri :
Date
Titre
Auteur
Équations différentielles stochastiques rétrogrades quadratiques et réfléchies
Mathématiques et leurs interactions / 21-03-2018
Hibon Hélène
Voir le résumé
Voir le résumé
Cette thèse s'intéresse à une étude variée des EDSRs. Une grande partie des résultats sont obtenus sous l'hypothèse d'une croissance de type quadratique du générateur en sa dernière variable. Un premier lien entre EDSRs quadratiques unidimensionnelles et théorie des jeux nous amène à développer des résultats avec générateurs convexes. La théorie du contrôle optimal nécessite quant à elle de traiter du cas multidimensionnel, dans lequel existence et unicité globales ne sont obtenues que pour des générateurs diagonalement quadratiques. Les résultats majeurs sur les EDSRs réfléchies (dont la solution est contrainte à rester dans un domaine) concernent des générateurs Lipschitziens. C'est dans ce cadre que nous développons un résultat de propagation du chaos, avec une contrainte portant sur la loi de la solution plutôt que sur sa trajectoire. Nous dressons enfin un pont entre EDSRs quadratiques et EDSRs réfléchies grâce aux EDSRs quadratiques de type champ moyen. Nous donnons plusieurs nouveaux résultats sur la possibilité de résoudre une équation quadratique dont le générateur dépend également de la moyenne des deux variables.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
© 2016
|
MENTIONS LEGALES
|
PLUS D'INFORMATION