|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 11-07-2018
Haugomat Tristan
Voir le résumé
Voir le résumé
Dans cette thèse, nous donnons une localisation en espace de la théorie des processus de Feller. Un premier objectif est d’obtenir des résultats simples et précis sur la convergence de processus de Markov. Un second objectif est d’étudier le lien entre les notions de propriété de Feller, problème de martingales et topologie de Skorokhod. Dans un premier temps nous donnons une version localisée de la topologie de Skorokhod. Nous en étudions les notions de compacité et tension. Nous faisons le lien entre les topologies de Skorokhod localisée et non localisée, grâce à la notion de changement de temps. Dans un second temps, à l’aide de la topologie de Skorokhod localisée et du changement de temps, nous étudions les problèmes de martingales. Nous montrons pour des processus l’équivalence entre, d’une part, être solution d’un problème de martingales bien posé, d’autre part, vérifier une version localisée de la propriété de Feller, et enfin, être markovien et continu en loi par rapport à sa condition initiale. Nous caractérisons la convergence en loi pour les solutions de problèmes de martingale en terme de convergence des opérateurs associés et donnons un résultat similaire pour les approximations à temps discret. Pour finir, nous appliquons la théorie des processus localement fellerien à deux exemples. Nous l’appliquons d’abord au processus de type Lévy et obtenons des résultats de convergence pour des processus à temps discret et continu, notamment des méthodes de simulation et schémas d’Euler. Nous appliquons ensuite cette même théorie aux diffusions unidimensionnelles dans des potentiels, nous obtenons des résultats de convergence de diffusions ou marches aléatoires vers des diffusions singulières. Comme conséquences, nous déduisons la convergence de marches aléatoires en milieux aléatoires vers des diffusions en potentiels aléatoires.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|