|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 22-09-2020
Hamlat Bastien
Voir le résumé
Voir le résumé
Cette thèse concerne la modélisation mathématique des réactions cinétiques comprenant des phases pures. Dans le premier chapitre, un modèle de type EDOs discontinues pour la cinétique avec apparitions et disparitions d'espèces pour un nombre quelconque de minéraux est proposé. Une version régularisée du modèle permet de prouver la positivité et l’existence. Une analyse explicite plus approfondie dans le cas contenant une espèce réactive intermédiaire est menée. Dans le deuxième chapitre, une reformulation du modèle de cinétique chimique utilisant la théorie de Filippov est proposée. Une preuve de l'existence et de la positivité des solutions est réalisée. De plus, dans le cas des surfaces de discontinuité de codimension 1, une étude des configurations des champs fournit un résultat d'unicité et de caractérisation des trajectoires. Dans le troisième chapitre, un modèle de cinétique chimique de type systèmes dynamiques projetés est proposé. Une analyse de l'existence des solutions de ce modèle, des liens avec d'autres types de formulations et une méthode de résolution numérique adaptée sont proposés. Enfin, une illustration des résultats numériques obtenus est réalisée pour des systèmes de cinétique chimique.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|