|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et appplications
/ 07-10-2014
Goujard Elise
Voir le résumé
Voir le résumé
Nous étudions les constantes de Siegel–Veech pour les surfaces plates et leurs liens avec les volumes de strates d'espaces de modules de différentielles quadratiques. Les constantes de Siegel–Veech donnent l'asymptotique du nombre de géodésiques périodiques dans les surfaces plates. Pour certaines surfaces plates, de telles géodésiques correspondent aux trajectoires périodiques dans les billiards rationnels correspondants. Les constantes de Siegel–Veech sont fortement reliées à la dynamique du flot géodésique dans les espaces de modules correspondants, par la formule d'Eskin–Kontsevich–Zorich exprimant la somme des exposants de Lyapunov du fibré de Hodge le long du flot de Teichmüller en fonction de la constante de Siegel–Veech pour la strate considérée et d'un terme combinatoire explicite. Cette dynamique est liée à la dynamique du flot linéaire dans la surface plate de départ par un procédé de renormalisation. En utilisant certaines propriétés de cette dynamique nous montrons un critère qui détermine quand une courbe complexe plongée dans l'espace de module des surfaces de Riemann munie d'un sous-fibré en droites du fibré de Hodge est une courbe de Teichmüller. Nous étudions certains rapports de constantes de Siegel–Veech et en déduisons des informations géométriques sur les régions périodiques dans les surfaces plates. Les liens entre les constantes de Siegel–Veech et les volumes d'espaces de modules ont été étudiés complètement dans le cas abélien par Eskin, Masur et Zorich, et dans le cas quadratique en genre zéro par Athreya, Eskin et Zorich. Nous généralisons ces résultats au cas quadratique en genre supérieur, en utilisant la description des configurations de liens selles produite par Masur et Zorich. Nous calculons de façon explicite certains volumes de strates de petite dimension.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|