|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 15-12-2020
Gordenko Anna
Voir le résumé
Voir le résumé
Cette thèse concerne l'étude de dynamique aléatoire dans deux situations différentes : celle des tableaux de Young aléatoires et celle de la dynamique sur la droite réelle. La première partie est consacrée à l’étude de tableaux de Young aléatoires et de leur comportement limite. Il s’avère que la description locale d’un tableau de Young aléatoire de grande taille donnée est reliée à un nouveau processus, une modification de TASEP (Totally Asymmetric Simple Exclusion Process). Je détermine l'entropie topologique et la mesure d'entropie maximale de cette modification, qui se révèle être déterminantale. J’utilise cette description pour écrire le principe variationnel des tableaux de Young aléatoires, ainsi que pour retrouver les noyaux de processus de perles et pour donner une explication de l'apparition du processus de sinus sur le bord des diagrammes de Young aléatoires. La deuxième partie est consacrée à l’étude de systèmes dynamiques aléatoires sur la droite réelle. J’étudie la dualité entre le comportement dynamique des systèmes formés par une famille d'applications et par celui de leurs inverses. Il se révèle que sous des hypothèses assez faibles, il n'y a que quatre comportement possibles pour les couples formés par ces systèmes et leur inverse, ces comportements se décrivent selon l'existence d’une mesure stationnaire finie, infinie ou semi-infinie, et selon les propriétés de récurrence et de convergence des points vers l’infini.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|