|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Signal, image, vision
/ 07-07-2021
Gheisari Marzieh
Voir le résumé
Voir le résumé
Cette thèse aborde le problème de l'authentification des dispositifs à faible puissance dans l'Internet des objets en introduisant de nouvelles fonctionnalités : la vérification de l'appartenance à un groupe et l'identification. La procédure vérifie si un dispositif IoT donné est membre d'un groupe sans révéler l'identité de ce membre. De même, l'identification de l'appartenance à un groupe indique à quel groupe le dispositif appartient sans connaître son identité. Nous proposons un protocole par l'utilisation conjointe de deux mécanismes : la quantification des motifs dans des plongement discrets, rendant la reconstruction difficile, et l'agrégation de plusieurs motifs dans une représentation de groupe, entravant l'identification. Tout d'abord, nous considérons deux procédures indépendantes, l'une pour l'plongement, l'autre pour l'agrégation. Ensuite, nous remplaçons ces fonctions déterministes par des fonctions dont les paramètres sont appris par optimisation. Enfin, plutôt que de considérer des affectations de groupes prédéterminées, les affectations de groupes sont également apprises avec les représentations des groupes. Nos expériences montrent que l'apprentissage permet un excellent compromis entre les performances de sécurité/confidentialité et de vérification/identification. Nous étudions également l'impact du niveau de sparsité des fonctionnalités représentant les membres du groupe sur les performances de sécurité et de vérification. Nous montrons qu'il est possible d'échanger la compacité et la sparsité pour une meilleure sécurité ou de meilleures performances de vérification.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|