Tri :
Date
Titre
Auteur
|
|
Sciences de la terre et de l'environnement
/ 12-12-2022
Abhervé Ronan
Voir le résumé
Voir le résumé
Le bassin rennais n’est pas épargné par le changement climatique. Les conditions
inhabituelles fragilisent déjà le système d’alimentation en eau potable du territoire. Mais qu’en sera-t-il dans le futur ? Les gestionnaires d’Eau du Bassin Rennais ont besoin d’outils pour prédire l’évolution des ressources en eau en amont des ouvrages de captages. Pour y répondre, la démarche de modélisation hydro(géo)logique développée, adaptée au contexte géologique de socle en Bretagne, s’est concentrée sur les relations entre la nappe d’eau souterraine et les cours d’eau. En se basant sur le réseau hydrographique de surface, une méthode de calibration des modèles a été innovée pour estimer les propriétés de la subsurface. L’approche de modélisation basée sur les processus hydrogéologiques reproduit l’intermittence des cours d’eau, indicateur de la résilience des bassins versants. Une fois la calibration validée, les modèles hydrogéologiques sont forcés par de multiples projections climatiques, allant de 1980 à 2100, et selon différents scénarios d’émission de gaz à effet de serre (RCP). Ces simulations hydrologiques fournissent une enveloppe de trajectoires probables d’évolution future du stock d’eau souterraine, du débit des cours d’eau, et de l’intermittence du réseau hydrographique. De manière générale, les projections prévoient une extension des périodes de déficit en eau, avec une occurrence accrue d’années de sécheresses consécutives. Les connaissances apportées et les outils opérationnels développés dans le cadre de cette thèse permettent, d’une part, de progresser sur des questions de recherches en plein essor, et d’autre part, d’offrir de nouvelles perspectives d’anticipation et d’optimisation des stratégies de gestion de l’eau, à l’échelle du territoire.
|
|
Sciences de la terre
/ 02-10-2015
Al-Sid-Cheikh Maya
Voir le résumé
Voir le résumé
La nanoscience est basée sur les changements de propriétés des particules lorsque leur diamètre est inférieur à 100 nm (i.e. nanoparticules, NPs). Devant l’utilisation croissante de tels NPs, et leur déversement probable dans l’environnement, l’évaluation de leurs risques sur la santé humaine et l’environnement est un enjeu majeur. Dans le cadre de la protection des eaux et des sols, l’évaluation de la qualité des eaux de surface est particulièrement importante, notamment dans les zones humides (ZHs), où la dynamique des métaux toxique (i.e. As, Pb, Ni, Cr, Hg) est complexe et dépend des conditions redox du milieu. Comme les NPs de magnétite (nano-Fe3O4), naturelles ou manufacturées, sont reconnues pour leur capacité d’adsorption importante face aux métaux lourds, leurs interactions dans les ZHs ripariennes (ZHRs) avec les ETMs restent critiques quant à leurs impacts directs ou indirects. Ainsi, l’objectif de cette thèse était d’étudier le rôle des nano-Fe3O4 manufacturées (~10nm) et des oxydes de fer naturels sur la dynamique des ETMs dans les eaux de surfaces et les sols de ZHRs. Ainsi, dans un premier volet portant sur des précipités colloïdaux naturels provenant de produits de reoxydation en milieu riparian (soumis à des oscillations redox), la distribution spatiale des éléments a été effectuée par cartographie isotopique nanoSIMS (i.e. 75As-, 56Fe16O-, le soufre (32S-) et la matière organique (12C14N-), alors que la spéciation du soufre a été évaluée par adsorption des rayons X au seuil K du soufre (S) (XANES). Ces analyses ont permis de mettre en évidences les interactions entre les oxydes de fer naturels, la matière organique naturelle (MON) et un métalloïde toxique, l’arsenic. Nos résultats suggèrent, par colocalisation statistique des images nanoSIMS, l’existence de deux types d’interaction : (1) 12C14N-, 32S-, 56Fe16O- et 75As-, et (2) 12C14N-, 32S- et 75As-. La coexistence des formes de S oxydées et réduites, confirmées par les analyses XANES, pourrait être attribuée à la lente cinétique d’oxydation de la MON. Ainsi, ce premier volet montre qu’en plus des interactions MON, oxydes de fer et As, de possibles interactions directes entre As et NOM à travers des groupements fonctionnels soufrés (e.g. thiols) sont aussi possibles en milieu oxydé. Dans un second volet, l’effet des nano-Fe3O4 (~ 10 nm) sur la mobilité des éléments traces (ETs) et des colloïdes, dans l'horizon organominéral d’un sol naturel de ZHR, a été évaluée à l’aide de colonnes de sol. Nos résultats montrent que l’enrobage des nanoparticules semble influencer la mobilité de la MON et des ETs du sol. En effet, la mobilité des ETs semble augmenter en présence de nano-Fe3O4 nus, suggérant des associations où la MON stabiliserait les nanoparticules et augmenterait leur mobilité ainsi que celle des ETs associés.
|
|
Sciences de la terre
/ 21-11-2014
Armandine Les Landes Antoine
Voir le résumé
Voir le résumé
Les eaux souterraines représentent environ 98% des eaux douces potentiellement disponibles pour l'homme sur notre planète, en faisant donc une ressource fondamentale de nos sociétés. Du fait du changement climatique et du fort lien existant entre le climat et le cycle de l'eau, une préoccupation légitime est née concernant l'impact potentiel de ce changement climatique sur les ressources en eau. À ce jour, des évidences de plus en plus nombreuses appuient le fait que les modifications des conditions climatiques se répercutent sur le cycle hydrologique. L'identification de la sensibilité des eaux souterraines aux variations climatiques est donc devenue indispensable. Or, le climat est un système hautement complexe dont les variations, contrôlées par de nombreux facteurs à la fois naturels et anthropiques s'effectuent sur toutes les échelles de temps. Les modifications climatiques ne sont donc pas un phénomène nouveau, les eaux souterraines ont par conséquent subi dans le passé les effets de ces variations climatiques, elles en subissent actuellement les changements et subiront celles à venir. Les travaux développés dans cette thèse ont abordé cette problématique visant à caractériser la sensibilité de la ressource en souterraine face aux variations climatiques. À l'aide de l'analyse de traceurs environnementaux à l'échelle régionale, les impacts d'évènements climatiques majeurs intervenus sur les derniers millions d'années (transgression marine et période glaciaire) sont mis en évidence au sein du système hydrogéologique actuel. Puis, à l'aide de modélisation hydrogéologique, l'impact du changement climatique est étudié à travers les relations particulières existantes entre l'eau souterraine et les compartiments de surface et l'océan. Toutes ces études mettent en avant la sensibilité de la ressource en eau souterraine aux variations climatiques en termes de qualité (salinisation) et de quantité (baisse des niveaux d'eau). Les ressources hydrogéologiques sont particulièrement sensibles aux variations climatiques et hydrologiques (modifications de recharge, intrusions eau de mer…) ainsi qu'aux facteurs non climatiques (activités humaines). La gestion de cette ressource nécessite donc de considérer à la fois les risques climatiques et non climatiques ainsi que de prendre en compte l'adaptation à long terme de ces systèmes.
|
|
Sciences de la terre et de l'environnement
/ 22-12-2023
Ba Mouhamadoul Moustapha
Voir le résumé
Voir le résumé
Dans le contexte de la rivière Sélune en France, où deux barrages sont en cours de retrait pour rétablir la continuité hydro-sédimentaire de la rivière, cette thèse s'est fixée pour objectif de comprendre les impacts potentiels de ces changements sur la dynamique de la zone hyporhéique. Cette zone, cruciale dans les cycles hydrologiques ainsi que pour la reproduction de certaines espèces de poisson, demeure mal comprise du fait du faible nombre de donnée disponibles. Pour pallier à ce problème, un réseau de capteurs autonomes mesurant différentes variables physico-chimiques a été déployé à partir d'octobre 2021, sur une durée de 2 ans. La méthodologie de cette étude repose sur l'analyse des gradients physico-chimiques verticaux dans les sédiments du lit de la rivière, en se penchant sur l'oxygène et la conductivité. L'hétérogénéité de la perméabilité a également été examinée grâce à des mesures de conductivité électrique. Les résultats ont révélé des variations spatiales significatives de la perméabilité du lit. En particulier, l'impact du flux sédimentaire lié à l'arasement des barrages a été observé, provoquant une diminution de la perméabilité dans certaines zones. En ce qui concerne l'oxygène dissous, les variations observées sont liées aux régimes d'infiltration et d'exfiltration, avec possiblement des baisses temporaires dues à l'activité microbienne en réponse à l'apport de matière organique. De plus, l'arrivée de sédiments en mai 2022 semble avoir entraîné une période prolongée d'anoxie, avec potentiellement des conséquences majeures pour la faune aquatique. Cette recherche a contribué à une meilleure compréhension de la zone hyporhéique et a souligné l'impact significatif du flux sédimentaire sur la perméabilité, la dynamique de l'oxygène et le phénomène de colmatage. Elle a également ouvert de nouvelles perspectives pour l'analyse des propriétés hydrothermiques du lit de la rivière, des flux d'eau et l'utilisation de mesures de conductivité électrique pour estimer la profondeur des échanges nappe-rivière, ainsi que le développement de modèles théoriques pour prédire le transport des éléments dissous et leur dégradation.
|
|
Sciences de la terre
/ 08-12-2016
Babey Tristan
Voir le résumé
Voir le résumé
Classiquement le transfert des contaminants dans le milieu souterrain est modélisé par un couplage des processus de transport physiques (écoulements contrôlés par les structures géologiques poreuses) et des processus de dégradation ou d'immobilisation chimiques et biologiques. Tant sur les structures géologiques que sur la chimie et la physique, les modèles sont de plus en plus détaillés mais de plus en plus difficiles à calibrer sur des données toujours très parcellaires. Dans cette thèse, nous développons une approche alternative basée sur des modèles parcimonieux sous la forme d’un simple graphe de compartiments interconnectés généralisant les modèles d’interaction de continuums (MINC) ou de transfert à taux multiples (MRMT). Nous montrons que ces modèles sont particulièrement adaptés aux milieux dans lesquels la diffusion de solutés occupe un rôle prépondérant par rapport à l’advection, tels les sols ou les aquifères très hétérogènes comme les aquifères fracturés. L'homogénéisation induite par la diffusion réduit les gradients de concentration, accélère les mélanges entre espèces et fait de la distribution des temps de résidence un excellent proxy de la réactivité. En effet, ces structures simplifiées reconstituées à partir d’informations de temps de résidence se révèlent également pertinentes pour des réactions chimiques non linéaires (e.g. sorption, précipitation/dissolution). Nous montrons finalement comment ces modèles peuvent être adaptés automatiquement à des observations d’essais de traceurs ou de réactions de biodégradation. Ces approches parcimonieuses présentent de nombreux avantages dont la simplicité de développement et de mise en œuvre. Elles permettent d’identifier les déterminants majeurs des échanges entre zones advectives et diffusives ou entre zones inertes et réactives, et d’extrapoler des processus de réactivité à des échelles plus larges. L’utilisation de données de fractionnement isotopique est proposée pour améliorer la dissociation entre l’effet des structures et de la réactivité.
|
|
Sciences de la terre
/ 23-03-2017
Baby Guillaume
Voir le résumé
Voir le résumé
Le plateau sud-africain (ou Kalahari) est le plateau anorogénique le plus grand au monde. Sa très grande longueur d’onde (×1000 km) et son altitude moyenne élevée (1000-1500 m) impliquent des processus mantelliques. La cinétique et l’origine de ce relief sont mal comprises. D’un côté, les études géomorphologiques le considèrent comme un relief mis en place à la fin de l’intervalle Cénozoïque (<30 Ma). A l’inverse, les données thermochronologiques montrent deux phases de dénudation pendant l’intervalle crétacé, corrélées à des phases d’accélération du flux silicoclastique sur les marges, qui suggèrent qu’il s’agirait d’un relief plus ancien hérité du Crétacé supérieur. Peu d’études ont porté sur l’évolution du système terre-mer depuis le bassin versant en érosion aux marges en sédimentation. Ce travail de thèse repose donc sur une double approche : une analyse géomorphologique des formes du relief (surfaces d’aplanissement) à terre, basée sur leur (i) cartographie, (ii) chronologie relative, (iii) relation avec les profils d’altération et (iv) datation au moyen des placages sédimentaires et du volcanisme datés qui les fossilisent ; une analyse stratigraphique de l’intervalle post-rift des marges, basée sur l’interprétation de données de sub-surface (lignes sismiques et puits), réévaluées en âge (biostratigraphie), pour (i) identifier, dater et mesurer les déformations des marges et de leur relief amont , (ii) mesurer les flux silicoclastiques, produits de l’érosion continentale. Un calendrier et une cartographie des déformations ont été obtenus sur les marges et mis en relation avec les différentes générations de surfaces d’aplanissement étagées qui caractérisent le relief du plateau sud-africain. Au moins deux périodes de déformation ont été identifiées au Crétacé supérieur (92-70 Ma) et à l’Oligocène (30-15 Ma). L’évolution est la suivante : 100 - 70 Ma (Cénomanien à Campanien) : plateau à très grande longueur d’onde, peu élevé (0-500 m), bordé à l’est par des reliefs plus hauts et plus anciens le long des marges indiennes, qui agissent comme une ligne de partage des eaux entre l’océan Atlantique et l’océan Indien. La déformation est initiée à l’est avec une flexuration brève, à grande longueur d’onde, des marges indiennes aux alentours de ~92Ma. Cette première surrection marque un paroxysme d’érosion enregistré par la mise en place d’un delta géant sur la marge atlantique (delta de l’Orange). La déformation migre ensuite vers l’ouest avec la croissance du bourrelet marginal atlantique entre 81 et 70 Ma. Le relief acquiert sa configuration actuelle comme l’indique une diminution du flux silicoclastique sur la marge atlantique qui traduit un changement majeur du système de drainage ; 70-30 Ma (Crétacé terminal-Paléogène) : période d’apparente non déformation. Le relief est fossilisé et intensément altéré (latérites) ; 30-15 Ma (Oligocène - Miocène inférieur) : deuxième surrection du plateau sud-africain qui acquière sa topographie actuelle. La déformation semble plus importante à l’est du plateau - flexure des marges nord indiennes initiée à ~25 Ma qui alimente les grands deltas de l’océan Indien (Zambèze, Limpopo, Tugela) ; le relief est fossilisé à partir du Miocène moyen, synchrone d’une aridification majeure de l’Afrique australe.
|
|
Sciences de la terre
/ 02-12-2016
Ballouard Christophe
Voir le résumé
Voir le résumé
Les granites peralumineux sont les acteurs principaux de la différentiation de la croûte continentale et représentent un enjeu sociétal important car ils sont associés à de nombreux gisements métallifères. Dans la chaîne hercynienne européenne, la majorité des gisements hydrothermaux d'uranium (filons ou épisyenites) sont associés à des leucogranites peralumineux d'âge tardi-carbonifère. Ainsi dans le Massif armoricain, 20000 t d'uranium (U) (~20% de la production historique française), ont été extraites des gisements associés aux leucogranites de Mortagne, Pontivy et Guérande. L'objectif de ce travail est de mieux comprendre le cycle de l'uranium dans la chaîne hercynienne armoricaine depuis la source des leucogranites, leur évolution et leur mise en place dans la croûte supérieure jusqu'à leur lessivage par des fluides, la formation des gisements puis leur exhumation en sub-surface. Dans ce but, des données pétro-géochimiques, géochronologiques et thermochronologiques ont été obtenues sur les leucogranites de Guérande, Pontivy et leurs gisements d'uranium associés. Les leucogranites de Guérande et de Pontivy se sont mis en place, respectivement, à ca. 310 Ma dans une zone de déformation extensive dans le domaine interne de la chaîne et ca. 315 Ma dans le domaine externe le long du cisaillement sud armoricain (CSA), une faille décrochante d'échelle lithosphérique. Les deux leucogranites sont issus d'un faible taux de fusion partielle de métasédiments détritiques et d'orthogneiss peralumineux, la fusion de ces derniers ayant vraisemblablement joué un rôle majeur dans la richesse en uranium des leucogranites. La fusion de la croûte continentale dans la zone interne de la chaîne a été induite par l'extension tardi-orogénique alors que la fusion de la croûte mais aussi du manteau dans la zone externe était probablement contrôlée par une déformation décrochante diffuse. La cristallisation d'oxydes d'uranium magmatiques dans les facies les plus évolués des leucogranites au moment de leur mise en place a été vraisemblablement rendue possible grâce à l'action combinée de la cristallisation fractionnée et d'une activité magmatique-hydrothermale diffuse. De ca. 300 Ma à 270 Ma, une activité tectonique fragile le long du CSA et des détachements a permis l'infiltration de fluides météoriques oxydants en profondeur induisant la mise en solution des oxydes d'uranium des leucogranites. Ensuite, les fluides ont précipité leur U dans des failles ou des fentes de tension à proximité du contact avec des lithologies sédimentaires avec un caractère réducteur variable. Les leucogranites étaient toujours en profondeur à des températures supérieures à 120°C au moment de la formation des gisements et leur exhumation en sub-surface n'est pas enregistrée avant le Trias ou le Jurassique. Ce modèle métallogénique n'est probablement pas exclusif au Massif armoricain car la période de formation des gisements d'U dans la région entre 300 et 270 Ma est la même que dans l'ensemble de la chaîne hercynienne européenne.
|
|
Sciences de la Terre et de l'Environnement
/ 07-10-2020
Beauvois Anthony
Voir le résumé
Voir le résumé
Dans les systèmes naturels, les hétéro-agrégats organo-minéraux fer-matière organique (Fe-MO) jouent un rôle clé dans la dynamique des polluants. Leur capacité à adsorber les métaux et métalloïdes dépend de leur organisation structurale, elle-même contrôlée par les conditions physico-chimiques dans l’environnement. Le calcium (Ca) et l’aluminium (Al) sont des cations majeurs qui peuvent interagir avec la MO et/ou le Fe. Leur impact sur la structure des agrégats Fe-MO et, par conséquent, sur leur réactivité peut donc s’avérer important. En présence de Ca et d’Al, l’organisation structurale des associations Fe-MO évolue d’un état colloïdal vers un réseau micrométrique dont les connexions sont assurées soit par des dimères de Ca, soit par des monomères, oligomères ou hydroxydes amorphes d’Al. Le Fe(III) est organisé sous forme d’oligomères et de nanoparticules de type ferrihydrite (Nps-Fh). La taille et la proportion des Nps-Fh augmentent avec l’augmentation de la concentration en Ca ou Al en réponse à la diminution des liaisons Fe-MO ; cette diminution étant due, à la formation de liaisons Ca-MO ou Al-MO. La présence du Ca contrôle la réactivité des phases de Fe vis-à-vis de l’arsenic. En limitant les interactions entre la MO et les Nps-Fh, le Ca augmente la disponibilité des sites d’adsorption pour l’arsenic. Ces résultats apportent une nouvelle vision du rôle des hétéro-agrégats de Fe-MO dans la mobilité des éléments chimiques. Celle-ci apparait plus limitée qu’attendu, en raison de la formation d’un réseau Fe-MO micrométrique.
|
|
Sciences de la terre
/ 02-06-2016
Ben Maamar Sarah
Voir le résumé
Voir le résumé
Les aquifères de socle fracturés très répandus en Bretagne, constituent des formations géologiques hétérogènes renfermant des ressources en eau. Ces structures sont souvent constituées d'une zone altérée et d'une zone fracturée. La zone altérée est peu épaisse et proche de la surface, elle est constituée de roches altérées envahies par l'eau souterraine qui y circule rapidement des hauts topographiques du bassin versant vers l'exutoire. L'eau y présente des temps de résidence courts (<20 ans) et est souvent polluée par les nitrates. La zone altérée située plus en profondeur et plus épaisse est constituée de roches dures traversées par des fractures. L'eau circule exclusivement au travers de fractures et lentement, le temps de résidence de l'eau y est donc long (>40 ans). Dans cette zone, l'eau est plus minéralisée et souvent riche en fer en Bretagne. Ces différentes circulations d'eau, induisent des conditions chimiques contrastées dans les zones altérée et fracturée, mais leur effet sur l'écosystème microbien des eaux souterraines n'a jamais été exploré. Cette étude montre que les circulations hydrologiques influencent à l'échelle régionale et locale la structuration des communautés microbiennes au sein des eaux souterraines d'aquifères de socle. La position d'une eau souterraine le long des voies de circulations des eaux souterraines dites « boucles hydrologiques » contrôle directement la structure des communautés microbiennes via le contrôle de la succession des donneurs et accepteurs d'électrons disponibles. Les communautés microbiennes analysées montrent une prédominance de Nitrobacter. Dans l'eau souterraine récente (<20 ans) donc principalement dans la zone altérée, les Nitrobacter. sont surtout des Comamonadaceae et Oxalobacteraceae, microorganismes versatiles et capables de dénitrifier. Dans l'eau souterraine ancienne (>40 ans) et isolée donc dans la zone fracturée, ce sont en grande majorité des Gallionellaceae, microorganismes microaérophiles spécialisés dans l'oxydation du fer(II). La prédominance des Gallionellaceae dans la zone fracturée suggère un écosystème profond basé sur l'oxydation du fer(II). Cependant, ce processus suppose une arrivée minimale d'oxygène dans la partie profonde, via par exemple un mélange avec une masse d'eau récente oxygénée. La proportion de Gallionellaceae dans les différentes eaux analysées montre une corrélation positive avec le degré de mélange des eaux anciennes avec des eaux récentes, jusqu'à une limite de 20% d'eau récente. Le suivi temporel de la dynamique des communautés d'un aquifère avant et au début de la recharge a montré dans la zone altérée des conditions chimiques très fluctuantes et une communauté microbienne très changeante mais toujours constituée de nombreux potentiels dénitrifiants. Dans la zone fracturée, la communauté dominée par les Gallionellaceae est relativement stable, malgré des changements chimiques ponctuels substantiels et un degré de mélange transitoire important (jusqu'à 60% d'eau récente) au début de la recharge. Les Gallionellaceae semblent donc capables de résister à des changements ponctuels et importants des conditions chimiques. Les eaux souterraines de la partie profonde des aquifères, bien qu'isolées, restent relativement connectées à la surface ce qui permet probablement le maintien de l'écosystème microbien profond.
|
|
Sciences de la terre et de l'environnement
/ 14-12-2020
Bernard Maxime
Voir le résumé
Voir le résumé
Le Cénozoïque est marqué par un refroidissement global du climat et des périodes glaciaires/interglaciaires qui se sont intensifiées au milieu du Pléistocène passant de cycles de retour de 40 ka à 100 ka. Des observations montrent une augmentation des taux d’érosion globaux à la même période. L’érosion impacte la dynamique des chaines de montagnes en focalisant la déformation. Ainsi, un débat existe depuis 30 ans à savoir quel est l’impact du climat sur l’évolution des chaines de montagnes, contrôlée au premier ordre par la tectonique. Bien que notre compréhension de l’érosion glaciaire et de son impact sur le relief ait significativement augmentée depuis, des ambiguïtés demeurent quant à son rôle dans l’augmentation récente des taux d’érosion. Dans ces travaux de thèse, j’adopte une approche de modélisation numérique pour contraindre d’une part, le rôle de la lithologie sur la distribution spatiale de l’érosion glaciaire, et d’autre part, l’impact du transport glaciaire sur les enregistrements de thermochronologie détritique caractérisant la distribution spatiale de l’érosion. Les résultats montrent que la lithologie contrôle la distribution spatiale de l’érosion, en déterminant la résistance des substrats rocheux à l’érosion, impactant ainsi la morphologie des vallées glaciaires. Le transport glaciaire limite le mélange latéral des sédiments et favorise leur stockage en amont dans les glaciers tributaires montrant de faibles vitesses d’écoulement. Cela impacte les distributions d’âges détritiques thermochronologiques collectés au front des glaciers, en tamponnant la contribution réelle des versants et favorisant la contribution des basses altitudes proches du site d’échantillonnage ; pouvant ainsi mener à des interprétations erronées de la distribution spatiale de l’érosion glaciaire. Ainsi, ces travaux apportent de nouvelles connaissances au débat actuel, ainsi que des perspectives quant à l’apport de la modélisation numérique dans l’évaluation des outils de diagnostic.
|
|