|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mécanique des milieux fluides
/ 28-06-2021
Georgescu Matei-Razvan
Voir le résumé
Voir le résumé
La présente thèse visait à étudier et à améliorer par une démarche expérimentale et numérique, le système de ventilation à bord des cabines privées (Crew Quarters, CQ) du Node 2 de la Station Spatiale Internationale (ISS). Ce travail a été motivé par les incidents d'intoxication des astronautes au CO₂ à bord de l'ISS, rapportés par la NASA. L’absence de convection naturelle en microgravité conduit à une poche de CO₂ autour de la tête de l’astronaute issu de sa respiration, particulièrement gênante en périodes d’inactivité (sommeil) dans le CQ. Il s’avère ainsi que le système de ventilation mécanique général en place dans le CQ ne semble pas jouer effacement son rôle de renouvellement d’air. S’ajoute à ce problème, une nuisance acoustique liée aux ventilateurs, en particulier à haut débit de ventilation. La stratégie d’amélioration du système de ventilation proposée vise à simplifier le circuit actuel, en remplaçant les ventilateurs axiaux (désignée par solution AF) par des ventilateurs tangentiels (désignée par solution CFF) plus silencieux. Cette modification simple et de mise en œuvre aisée du circuit, permet de réduire la perte de charge et gagner de l’espace dans le CQ. Cette solution offre par ailleurs la possibilité d’enrichir à faible coût le système de ventilation générale par une ventilation personnalisée (PV). La PV disperse le CO₂ en zone de respiration et alimente la fonction respiratoire de l’astronaute par de l’air purifié. Le CQ a été simulé par une maquette expérimentale échelle 1 et son jumeau numérique sous FLUENT. La maquette expérimentale (sur terre) a permis la validation du jumeau numérique en tenant compte de l’effet de la gravité. Le modèle numérique ainsi validé, a permis l’optimisation du système de ventilation hors effet de gravité. L’astronaute simulé numériquement dans la cabine est muni d’une fonction respiratoire sinusoïdale avec génération de CO₂. Une première analyse numérique de l’accumulation du CO₂ dans le CQ occupé et non ventilé a été conduite avec et sans effet de gravité. Des mesures expérimentales sur des sujets humains dans la maquette expérimentale ont permis de valider la démarche. Les résultats ont prédit avec succès les niveaux d’accumulation de CO₂ et ont aidé à délimiter spatialement la zone de respiration (BZ de Breathing Zone) de l’occupant par une analyse FFT de la signature fréquentielle de la respiration sur le champ de vitesse. Il s’en est suivi une analyse du champ de l’écoulement de la ventilation générale de la cabine et autour de l’astronaute. Un modèle expérimental à échelle réduite transparent utilisant l’eau comme fluide de travail a permis un diagnostic fin du champ de vitesse par PIV. Ces champs de vitesses ont été utilisés pour valider les résultats numériques à pleine échelle aux mêmes nombres de Reynolds. Cette étape a permis de mettre en évidence l’incapacité du système de ventilation général à traiter la zone utile, à savoir, le BZ de l’astronaute. Pour y remédier, le circuit de ventilation général a été revisité. La comparaison numérique des solutions AF et CFF a révélé que même si les champs d'écoulement n'étaient pas significativement modifiés, le CFF offre une meilleure uniformité de l’écoulement au soufflage et de meilleures performances acoustiques avec une consommation d’énergie plus faible. La solution CFF proposée offre avant tout la possibilité de mettre en œuvre une solution de ventilation personnalisée PV pour un traitement localisé de l’accumulation du CO₂ dans le BZ. Sa mise en œuvre en position latérale par rapport à la tête de l’astronaute réduit la concentration de CO₂ de l’air inhalé.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|