|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et applications
/ 11-12-2013
Futhazar Grégory
Voir le résumé
Voir le résumé
Dans la première partie, on s'intéresse à la multi-diffusion d'une onde acoustique avec une matrice homogène 2D contenant N inclusions. Dans le cas particulier de deux inclusions, on met alors en évidence l'importance du contraste matrice/inclusion dans les termes d'interactions entre inclusions. Le cas général de la multi-diffusion, pour distribution aléatoire de N inclusions, est ensuite développé dans l'esprit de Foldy-Lax basé sur des moyennes d'ensembles. Ainsi on cherche à déterminer le nombre d'onde effectif de l'onde effective, définie comme la moyenne du champ total, dans le cas d'une onde incidente émise par un point source. La deuxième partie est consacrée au cloaking actif dans une plaque. On détermine ainsi les amplitudes modales des sources multipolaires afin d'éteindre une onde plane ou émise par un point source, dans une région donnée. En outre, cette méthode peut s'appliquer pour éteindre l'onde diffractée par un défaut. Enfin dans la dernière partie, on se propose d'étudier la propagation d'onde au sein d'un milieu comportant des dislocations. On utilise la géométrie de Riemann-Cartan afin de modéliser ce milieu continu. Afin d'illustrer les différences que peuvent induire deux définitions possibles de la déformation (spatiale et matérielle), nous étudions la propagation d'ondes 3D dans l'exemple simple d'un milieu continu avec une densité uniforme et stationnaire de défauts. L'anisotropie et l'atténuation sont présentes dans les deux modèles mais sous forme différente. Enfin la déformation matérielle induit des modes de respiration et, en régime haute fréquence, des ondes transverses qui suivent l'escalier en spirale de Cartan.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|