Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Thèses de doctorat > Par auteur
Nouveautés
Par thématique
Par laboratoire
Par date
Par auteur
Thèses de doctorat -> Auteurs
Auteurs
>
F
>
Francini Camille
Niveau supérieur
1
ressource a été trouvée.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Tri :
Date
Titre
Auteur
Caractères de groupes algébriques sur Q et mesures invariantes sur les solénoïdes
Mathématiques / 06-07-2020
Francini Camille
Voir le résumé
Voir le résumé
Cette thèse comporte deux parties dans lesquelles les mesures de probabilités invariantes sur les solénoïdes jouent un rôle majeur. Les solénoïdes (c’est-à-dire les groupes abéliens compacts connexes de dimension topologique finie) sont des généralisations naturelles des tores usuels. Dans la première partie, nous étudions les groupes de transformations affines de solénoïdes ; nous obtenons une condition nécessaire et suffisante pour que l’action d’un tel groupe possède un trou spectral quand le solénoïde est muni de la mesure de Haar. Dans la deuxième partie nous étudions les traces et caractères des groupes algébriques sur le corps des nombres rationnels. Les traces d’un groupe dénombrable sont des fonctions de type positif sur le groupe qui sont invariantes par conjugaison. Les caractères (c’est-à-dire les traces qui sont indécomposables dans un certain sens) sont des généralisations des caractères usuels des représentations de dimension finie et interviennent en théorie des algèbres d’opérateurs ainsi que dans l’étude des sous-groupes distingués aléatoires. Nous commençons par classifier ces caractères dans le cas des groupes unipotents. Puis nous étendons cette classification au cas des groupes algébriques généraux, à l’aide de l’étude du cas unipotent et de la détermination des mesures invariantes sur les solénoïdes adéliques.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
© 2016
|
MENTIONS LEGALES
|
PLUS D'INFORMATION