|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Signal, image, vision
/ 06-12-2023
Fermanian Rita
Voir le résumé
Voir le résumé
Cette thèse est consacrée à contribuer à des solutions d'apprentissage profond pour régulariser des problèmes inverses en imagerie perspective et omnidirectionnelle. Dans la première partie, nous nous concentrons sur les images 2D et nous commençons par proposer de régulariser le Deep Image Prior avec le débruiteur DRUNet de pointe. Cette combinaison améliore les performances du DIP et se compare favorablement avec les méthodes qui ont été proposées précédemment pour le régulariser. Ensuite, nous proposons une nouvelle approche pour entraîner un réseau modélisant le gradient d'un régulariseur en utilisant un débruiteur appris. Nous utilisons ce réseau dans un algorithme de descente de gradient Plug-and-play et montrons qu'il surpasse les méthodes génériques existantes. Dans la deuxième partie de cette thèse, nous nous concentrons sur les images omnidirectionnelles et nous abordons le problème du débruitage, comme première étape vers des méthodes de régularisation basées sur le débruiteur. Nous introduisons un nouveau débruiteur sphérique, en transférant le débruiteur DRUNet de pointe sur la sphère. Nous montrons également que le débruitage d'images omnidirectionnelles est plus efficace lorsqu'il est effectué directement sur la sphère plutôt que débruiter sa projection.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|