|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 22-06-2021
Eid Elie
Voir le résumé
Voir le résumé
Nous proposons dans cette thèse des algorithmes effectifs de calcul d’isogénies entre courbes elliptiques et Jacobiennes de courbes hyperelliptiques via l’approche des équation différentielles p-adiques avec un bon contrôle de précision. Plus précisément, nous nous intéressons dans un premier temps au calcul d’isogénies entre courbes elliptiques définies sur une extension de Q2. Ce travail vient ainsi compléter ceux réalisés pour le cas impair. Nous donnons quelques applications, en particulier le calcul d’isogénies entre courbes elliptiques sur des corps finis de caractéristique 2 et de polynômes irréductibles, tous deux en temps quasi-linéaire en le degré. Dans un second temps, nous présentons un algorithme de calcul explicite de représentations rationnelles d’isogénies entre Jacobiennes de courbes hyperelliptiques sur une extension de Qp. Par conséquent, après avoir éventuellement relevé le problème dans les p-adiques, nous obtenons des algorithmes efficaces pour le calcul d’isogénies entre Jacobiennes de courbes hyperelliptiques définies sur des corps finis de caractéristique impaire. Une autre application importante que nous en déduisons est le calcul des polynômes de Cantor de l-divisions. L’efficacité de ces algorithmes repose sur une analyse fine des solutions d’équations différentielles p-adiques.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|