|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Signal, image, vision
/ 16-06-2023
De Turenne Aurélien
Voir le résumé
Voir le résumé
Les thérapeutiques endovasculaires ont connu un essor très important ces dernières années. Le préalable à tout acte interventionnel est de pouvoir accéder à la zone cible rapidement et efficacement. Cependant la navigation endovasculaire réalisée lors du cathétérisme est un geste technique qui s’avère difficile dans nombre de cas pathologiques, voire parfois impossible. C'est le cas de la thrombectomie mécanique pour le traitement endovasculaire de l'AVC ischémique. Afin de surmonter ces difficultés, nous apportons dans cette thèse plusieurs contributions dans le contexte de l'aide à la navigation endovasculaire : (i) une méthode deep-learning de segmentation automatique des structures vasculaires 3D d'intérêt à partir de l'angio-IRM pré-opératoire, (ii) une nouvelle méthode de recalage 3D/2D par recherche exhaustive multi-résolution permettant d'augmenter l'imagerie per-opératoire sans produit de contraste avec les données de l'imagerie préopératoire, et (iii) une nouvelle mesure de similarité entre patients exprimée en terme de navigabilité endovasculaire afin d'aider au choix de matériels dans un contexte de raisonnement à partir de cas.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|