Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Toutes les thèses > Par auteur
Nouveautés
Par date
Par auteur
Toutes les thèses -> Auteurs
Auteurs
>
D
>
Davy Damien
Niveau supérieur
1
ressource a été trouvée.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Tri :
Date
Titre
Auteur
Spécialisation du pseudo-groupe de Malgrange et irréductibilité
Mathématiques et applications / 13-12-2016
Davy Damien
Voir le résumé
Voir le résumé
Le pseudo-groupe de Malgrange d'un champ de vecteurs défini sur une variété est la sous-pro-variété de l'espace des jets de biholomorphismes locaux de cette variété obtenue en prenant la clôture de Zariski des flots du champ de vecteurs. Une équation différentielle ordinaire d'ordre 2 définit un champ de vecteurs sur une variété de dimension 3. Le pseudogroupe de Malgrange de ce dernier est de type différentiel d'ordre inférieur ou égal à 2. Une équation différentielle ordinaire d'ordre 2 est dite irréductible si ses solutions générales ne peuvent pas être exprimées à l'aide de solutions d'équations algébriques, différentielles linéaires ou différentielles d'ordre 1. Si le type différentiel du pseudo-groupe de Malgrange d'une équation d'ordre 2 est exactement 2 alors cette dernière est irréductible. Nous donnons plusieurs définitions du pseudo-groupe de Malgrange d'un champ de vecteurs équivalentes à la définition originale donnée par Bernard Malgrange. La définition du premier paragraphe nous permet d'appliquer un théorème de semi-continuité de la dimension des clôtures de Zariski des feuilles d'un feuilletage holomorphe de Philippe Bonnet. Nous obtenons le résultat suivant concernant les équations différentielles ordinaires dépendant de paramètres. Si le type différentiel du pseudo-groupe de Malgrange de l'équation spécialisée en une valeur des paramètres est à exactement 2 alors il en sera de même pour les pseudo-groupes de Malgrange de l'équation spécialisée en des valeurs générales des paramètres. Une première application de ce résultat est de redémontrer l'irréductibilité des équations de Painlevé pour des valeurs générales des paramètres. Une seconde application est de déterminer complètement les pseudo-groupes de Malgrange de ces équations pour des valeurs générales des paramètres. Les définitions du pseudo-groupe de Malgrange et les résultats de spécialisations s'adaptent aux équations aux q-différences. En appliquant ces résultats aux équations de Painlevé discrètes, nous obtenons le pseudo-groupe de Malgrange de ces dernières pour des valeurs générales des paramètres.
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
© 2016
|
MENTIONS LEGALES
|
PLUS D'INFORMATION