|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Titre
Auteur
|
|
Mathématiques et leurs interactions
/ 16-12-2021
Clarisse Rémi
Voir le résumé
Voir le résumé
Le thème de la sécurité de l'information est prédominant dans nos vies actuelles. En particulier, les utilisateurs de service, plus précisément en ligne, souhaitent que leurs données à caractère personnel soient traitées à des fins légitimes et avec leur consentement. Cela incite donc à concevoir des systèmes se pliant à de telles exigences. La cryptographie dispose de solutions puissantes pour satisfaire ce besoin de protéger la vie privée mais ces derniers nécessitent des outils mathématiques avancés. Dans cette thèse, nous abordons l'un de ces outils: le couplage sur les courbes elliptiques. Nous divergeons de l'approche générale, celle de prendre une courbe déjà établie, standardisée, quel que soit le protocole cryptographique, et proposons des courbes conçues pour optimiser les performances d’une famille spécifique d’algorithmes cryptographiques. Les courbes proposées dans cette thèse ont des opérations dans le premier groupe du couplage plus performantes, comparées aux courbes de la littérature. Nous donnons ensuite un schéma de signature de groupe, primitive déployée permettant d'assurer l'anonymat de ses utilisateurs au sein d'un groupe, conçu grâce aux couplages sur courbes elliptiques. Cette signature de groupe est compétitive face à l'état de l'art, tirant au maximum parti du couplage afin d'éviter d'utiliser des constructions lourdes, comme les preuves sans divulgation de connaissance, et de pâtir des limites associées, tant en termes de performances que de sécurité.
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|