Recherche avancée
Toutes les thèses
Thèses de doctorat
Thèses d'exercice (médecine, santé, pharmacie)
Thèses de doctorat > Par auteur en fr
  • Nouveautés
  • Par thématique
  • Par laboratoire
  • Par date
  • Par auteur
Thèses de doctorat -> Auteurs
Auteurs > C > Cavallazzi Thomas
Niveau supérieur
  • 1 ressource a été trouvée.
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Titre Auteur

Équations différentielles stochastiques dirigées par des bruits de Lévy : systèmes de particules en interaction de type champ moyen et processus de McKean-Vlasov


Mathématiques et leurs interactions / 23-06-2023
Cavallazzi Thomas
Voir le résumé
Voir le résumé
Cette thèse porte en grande partie sur l’étude des Équations Différentielles Stochastiques (EDS) non-linéaires au sens de McKean-Vlasov. Les bruits directeurs que nous considérons sont des processus de Lévy, en grande majorité des processus stables. On s’intéresse à quantifier la propagation du chaos au sens faible pour le système de particules en interaction de type champ moyen associé, sous des hypothèses höldériennes sur les coefficients. Cela se fait à travers l’étude du semigroupe, agissant sur les fonctions définies sur l’espace des mesures de probabilité, associé à l’EDS de McKean-Vlasov. En particulier, on exhibe des propriétés régularisantes du semigroupe, et on décrit sa dynamique grâce à la formule d’Itô le long d’un flot de mesures de probabilités. Cette formule est l’un des outils importants de cette thèse. Premièrement, on la prouve pour une grande classe de processus à sauts admettant un moment fini entre 0 et 2. Deuxièmement, on prouve, grâce à l’inégalité de Krylov, la formule d’Itô le long d’un flot de mesures pour des fonctions appartenant à un espace de type Sobolev. Dans la dernière partie de cette thèse, on s’intéresse à un système cinétique inhomogène en temps spécifique, qui est dirigé par un processus stable. On étudie son comportement asymptotique après changement d’échelle.

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2016  |  MENTIONS LEGALES  |  PLUS D'INFORMATION