Imprimer |
Statistical modeling of bladder motion and deformation in prostate cancer radiotherapy (Modélisation statistique du mouvement et de la déformation de la vessie dans la radiothérapie du cancer de la prostate) Rios Patiño, Richard - (2017-05-02) / Universite de Rennes 1, Universidad nacional de Colombia Statistical modeling of bladder motion and deformation in prostate cancer radiotherapy
| |||
Langue : Anglais Directeur(s) de thèse: Crevoisier, Renaud de; Espinosa Oviedo, Jairo Discipline : Traitement du signal et télécommunications Laboratoire : Laboratoire de Traitement du Signal et de l'Image Ecole Doctorale : MATISSE Classification : Sciences de l'ingénieur Mots-clés : Radiothérapie, Cancer de la prostate, Modélisation statistique
| |||
Résumé : Le cancer de la prostate est le cancer le plus fréquent chez les hommes dans la plupart des pays développés. C'est le cancer le plus fréquent chez les hommes en France (73.609 cas en 2014) et en Colombie (9564 cas en 2014). En outre, c'est la troisième cause de décès par cancer chez les hommes dans les deux pays (9,3 % en France et 7,1 % en Colombie en 2014). L'une des techniques de traitement est la radiothérapie externe, qui consiste à délivrer un rayonnement ionisant à une cible clinique, à savoir la prostate et les vésicules séminales. En raison des variations anatomiques au cours du traitement, qui consiste en environ 40 fractions de rayonnement délivrant une dose totale allant de 70 à 80Gy, des marges de sécurité sont définies autour de la cible tumorale lors de la planification du traitement. Ceci entraîne des portions d'organes sains voisins de la prostate - la vessie et le rectum - à être inclus dans le volume cible, pouvant conduire à des événements indésirables affectant les fonctions urinaires (hématurie et cystite, entre autres) ou rectale (saignement rectal, incontinence fécale, Etc.). La vessie présente les plus grandes variations de forme entre fractions de traitement, provoquées par des changements continus de volume. Ces variations de forme introduisent des incertitudes géométriques qui rendent difficile l'évaluation de la dose réellement délivrée à la vessie pendant le traitement. Ces incertitudes limitent la possibilité de modéliser une relation dose-volume pour la toxicité génito-urinaire tardive (GU). Le projet QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic) a déclaré que la relation dose-réponse pour la toxicité gastro-intestinale tardive (GI) était loin d'être établie. Les variables dosimétriques obtenues à partir de la tomodensitométrie de planification peuvent être faiblement représentative de la dose effectivement administrée. En conséquence, il est crucial de quantifier les incertitudes produites par les variations inter-fraction de la vessie afin de déterminer les facteurs dosimétriques qui affectent les complications GU tardives. Le but de cette thèse était donc de caractériser et de prédire les incertitudes produites par les variations géométriques de la vessie entre les fractions de traitement, en utilisant uniquement la tomodensitométrie de planification comme information d'entrée. En pratique clinique, une seule tomodensitométrie est disponible au moment de la planification du traitement pour un patient typique, alors que des images supplémentaires peuvent être acquises en cours de traitement. Dans cette thèse une approche population a été utilisée pour obtenir suffisamment de données pour apprendre les directions les plus importantes du mouvement et de la déformation de la vessie en utilisant l'analyse en composante principales (ACP). Comme dans les travaux de référence, ces directions ont ensuite été utilisées pour développer des modèles basés population pour prédire et quantifier les incertitudes géométriques de la vessie. Cependant, nous avons utilisé une analyse longitudinale afin de caractériser correctement la variance du patient et les modes spécifiques du patient à partir de la population. Nous avons proposé d'utiliser un modèle à effets mixtes (ME) et une ACP hiérarchique pour séparer la variabilité intra et inter-patients afin de contrôler les effets de cohorte confondus. Finalement, nous avons présenté des modèles sur l'APC comme un outil pour quantifier des incertitudes de la dose produit par le mouvement et déformation de la vessie entre fractions. Abstract : Prostate cancer is the most common cancer amongst the male population in most developed countries. It is the most common cancer amongst the male population in France (73.609 cases in 2014) and in Colombia (9564 cases in 2014). It is also the third most common cause of cancer deaths in males in both countries (9.3% and 7.1% in France and in Colombia in 2014, respectively). One of the standard treatment methods is external radiotherapy, which involves delivering ionizing radiation to a clinical target, namely the prostate and seminal vesicles. Due to the uncertain location of organs during treatment, which involves around forty (40) radiation fractions delivering a total dose ranging from 70 to 80Gy, safety margins are defined around the tumor target upon treatment planning. This leads to portions of healthy organs neighboring the prostate or organs at risk — the bladder and rectum — to be included in the target volume, potentially resulting in adverse events affecting patients’ urinary (hematuria and cystitis, among others) or rectal (rectal bleeding, fecal incontinence, etc.) functions. The bladder is notorious for presenting the largest inter-fraction shape variations during treatment, caused by continuous changes in volume. These variations in shape introduce geometric uncertainties that render assessment of the actual dose delivered to the bladder during treatment difficult, thereby leading to dose uncertainties that limit the possibility of modeling dose-volume response for late genitourinary (GU) toxicity. The Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) project has stated that a similar dose-response to that of late gastrointestinal (GI) toxicity is far from being established. The dosimetric variables obtained from the planning CT prove to be very poor surrogates for the real delivered dose. As a result, it appears crucial to quantify uncertainties produced by inter-fraction bladder variations in order to determine dosimetric factors that affect late GU complications. The aim of this thesis was thus to characterize and predict uncertainties produced by geometric variations of the bladder between fractions, using solely the planning CT as input information. In clinical practice, a single CT scan is only available for a typical patient during the treatment planning while on-treatment CTs/CBCTs are seldom available. In this thesis, we thereby used a population approach to obtain enough data to learn the most important directions of bladder motion and deformation using principal components analysis (PCA). As in groundwork, these directions were then used to develop population-based models in order to predict and quantify geometrical uncertainties of the bladder. However, we use a longitudinal analysis in order to properly characterize both patient-specific variance and modes from the population. We proposed to use mixed-effects (ME) models and hierarchical PCA to separate intra and inter-patient variability to control confounding cohort effects. . Subsequently, we presented PCA models as a tool to quantify dose uncertainties produced by bladder motion and deformation between fractions. |