Imprimer |
Partitionnement des images hyperspectrales de grande dimension spatiale par propagation d'affinité (Partitioning of large size hyperspectral images by affinity propagation) Soltani, Mariem - (2014-12-17) / Université de Rennes 1 - Partitionnement des images hyperspectrales de grande dimension spatiale par propagation d'affinité
| |||
Langue : Français Directeur(s) de thèse: Chehdi, Kacem Discipline : Traitement du signal et télécommunications Laboratoire : IETR Ecole Doctorale : Mathématiques, informatique, signal, électronique et télécommunications Classification : Sciences de l'ingénieur Mots-clés : partitionnement, réduction, classification, non supervisée, non paramétrique, propagation d’affinité, imagerie hyperspectrale, grande taille spatiale, validation, détection, plantes invasives
| |||
Résumé : Les images hyperspectrales suscitent un intérêt croissant depuis une quinzaine d'années. Elles fournissent une information plus détaillée d'une scène et permettent une discrimination plus précise des objets que les images couleur RVB ou multi-spectrales. Bien que les potentialités de la technologie hyperspectrale apparaissent relativement grandes, l'analyse et l'exploitation de ces données restent une tâche difficile et présentent aujourd'hui un défi. Les travaux de cette thèse s'inscrivent dans le cadre de la réduction et de partitionnement des images hyperspectrales de grande dimension spatiale. L'approche proposée se compose de deux étapes : calcul d'attributs et classification des pixels. Une nouvelle approche d'extraction d'attributs à partir des matrices de tri-occurrences définies sur des voisinages cubiques est proposée en tenant compte de l'information spatiale et spectrale. Une étude comparative a été menée afin de tester le pouvoir discriminant de ces nouveaux attributs par rapport aux attributs classiques. Les attributs proposés montrent un large écart discriminant par rapport à ces derniers et par rapport aux signatures spectrales. Concernant la classification, nous nous intéressons ici au partitionnement des images par une approche de classification non supervisée et non paramétrique car elle présente plusieurs avantages: aucune connaissance a priori, partitionnement des images quel que soit le domaine applicatif, adaptabilité au contenu informationnel des images. Une étude comparative des principaux classifieurs semi-supervisés (connaissance du nombre de classes) et non supervisés (C-moyennes, FCM, ISODATA, AP) a montré la supériorité de la méthode de propagation d'affinité (AP). Mais malgré un meilleur taux de classification, cette méthode présente deux inconvénients majeurs: une surestimation du nombre de classes dans sa version non supervisée, et l'impossibilité de l'appliquer sur des images de grande taille (complexité de calcul quadratique). Nous avons proposé une approche qui apporte des solutions à ces deux problèmes. Elle consiste tout d'abord à réduire le nombre d'individus à classer avant l'application de l'AP en agrégeant les pixels à très forte similarité. Pour estimer le nombre de classes, la méthode AP utilise de manière implicite un paramètre de préférence p dont la valeur initiale correspond à la médiane des valeurs de la matrice de similarité. Cette valeur conduisant souvent à une sur-segmentation des images, nous avons introduit une étape permettant d'optimiser ce paramètre en maximisant un critère lié à la variance interclasse. L'approche proposée a été testée avec succès sur des images synthétiques, mono et multi-composantes. Elle a été également appliquée et comparée sur des images hyperspectrales de grande taille spatiale (1000 × 1000 pixels × 62 bandes) avec succès dans le cadre d'une application réelle pour la détection des plantes invasives. Abstract : The interest in hyperspectral image data has been constantly increasing during the last years. Indeed, hyperspectral images provide more detailed information about the spectral properties of a scene and allow a more precise discrimination of objects than traditional color images or even multispectral images. High spatial and spectral resolutions of hyperspectral images enable to precisely characterize the information pixel content. Though the potentialities of hyperspectral technology appear to be relatively wide, the analysis and the treatment of these data remain complex. In fact, exploiting such large data sets presents a great challenge. In this thesis, we are mainly interested in the reduction and partitioning of hyperspectral images of high spatial dimension. The proposed approach consists essentially of two steps: features extraction and classification of pixels of an image. A new approach for features extraction based on spatial and spectral tri-occurrences matrices defined on cubic neighborhoods is proposed. A comparative study shows the discrimination power of these new features over conventional ones as well as spectral signatures. Concerning the classification step, we are mainly interested in this thesis to the unsupervised and non-parametric classification approach because it has several advantages: no a priori knowledge, image partitioning for any application domain, and adaptability to the image information content. A comparative study of the most well-known semi-supervised (knowledge of number of classes) and unsupervised non-parametric methods (K-means, FCM, ISODATA, AP) showed the superiority of affinity propagation (AP). Despite its high correct classification rate, affinity propagation has two major drawbacks. Firstly, the number of classes is over-estimated when the preference parameter p value is initialized as the median value of the similarity matrix. Secondly, the partitioning of large size hyperspectral images is hampered by its quadratic computational complexity. Therefore, its application to this data type remains impossible. To overcome these two drawbacks, we propose an approach which consists of reducing the number of pixels to be classified before the application of AP by automatically grouping data points with high similarity. We also introduce a step to optimize the preference parameter value by maximizing a criterion related to the interclass variance, in order to correctly estimate the number of classes. The proposed approach was successfully applied on synthetic images, mono-component and multi-component and showed a consistent discrimination of obtained classes. It was also successfully applied and compared on hyperspectral images of high spatial dimension (1000 × 1000 pixels × 62 bands) in the context of a real application for the detection of invasive and non-invasive vegetation species. |