Imprimer
Conception de micro-générateur piézoélectrique pour des micro-dispositifs médicaux autonomes
(Conception of a piezoelectric microgenerator for autonomous medical microdevices)

Bouzid, Asma - (2024-12-23) / Université de Rennes, Université Abou Bekr Belkaid‎ (Tlemcen, Algérie) - Conception de micro-générateur piézoélectrique pour des micro-dispositifs médicaux autonomes

Accéder au document : https://ged.univ-rennes1.fr/nuxeo/site/esupversion...

Langue : Français

Directeur(s) de thèse:  Charrier, Joël; Soulimane, Sofiane

Discipline : Photonique

Laboratoire :  FOTON

Ecole Doctorale : MATISSE

Classification : Sciences de l'ingénieur

Mots-clés : Système intégré, autonomie, Lab on Chip (LOC), piézoélectricité, Micro-pompe, Fluide (gaz et liquide) , microgénérateur, énergie biomécanique, énergie électrique
Résumé : Cette thèse vise à développer un système intégré et autonome en utilisant la technologie piézoélectrique soit pour l’actionnement ou pour la récupération d’énergie. Nous avons testé cette configuration sur un Lab on Chip (LOC) destiné à des applications médicales et environnementales. Ce LOC est utilisé pour la surveillance des polluants et des toxines dans des échantillons d'eau ou d'air. Pour assurer son bon fonctionnement, le LOC doit intégrer trois éléments essentiels : un système de fluidique, un système de détection et un système d'alimentation. La combinaison de ces trois composantes primordiales permet d'obtenir un dispositif autonome et totalement intégré. Dans le cadre de ce travail de recherche, deux systèmes sont mis en place : le système fluidique et le système d'alimentation. Au sein du premier système, une micro pompe à une membrane piézoélectrique a été étudiée à travers des analyses théoriques et des simulations sur COMSOL Multiphysics, confirmant la capacité du design choisi à pomper des débits importants de deux types de fluides, notamment les gaz et les liquides. Les résultats obtenus de cette étude ont montré que la micro pompe capable de fonctionner à des tensions faibles tout en manipulant des débits importants, pouvant aller jusqu'à plusieurs dizaines de microlitres. Cette capacité permet de répondre aux exigences en matière de quantité de fluide nécessaire à la circulation dans la zone de détection du système de laboratoire sur puce. Une puissance énergétique de l’ordre milliwatt a été calculé pour le bon fonctionnement de la micro pompe et ses modules électroniques. Pour répondre aux exigences énergétiques du système, un micro générateur piézoélectrique a également été développé. Ce dispositif convertit l'énergie biomécanique générée par la flexion du genou en énergie électrique, à travers une poutre piézoélectrique fixée à la face arrière du genou. Pendant la marche, la flexion du genou se transforme en énergie électrique, laquelle est ensuite mise en forme par un circuit redresseur de type AC-DC, rendant cette puissance exploitable par les composants électroniques du système. Les résultats obtenus de cette conversion indiquent que les niveaux de puissance générés augmentent avec l'intensité de la flexion du genou, atteignant des valeurs de dizaines de milliwatts qui se situent dans la plage nécessaire pour garantir un fonctionnement continu et en temps réel de système fluidique. Cette approche contribue à la réalisation d'un système intégré et autonome, optimisé tant sur le plan énergétique que fonctionnel.

Abstract : This thesis aims to develop an integrated and autonomous system using piezoelectric technology for both actuation and energy harvesting. We have applied this configuration in a Lab on Chip (LOC) designed for medical and environmental applications. This LOC is used for monitoring pollutants and toxins in water or air samples. To ensure its optimal functionality, the LOC must integrate three key components: a fluidic system, a detection system, and a power supply system. The combination of these essential elements results in a fully autonomous and integrated device. This research work focuses on the establishment of two systems: the fluidic system and the power supply system. Within the first system, a piezoelectric membrane micropump has been studied through theoretical analyses and simulations using COMSOL Multiphysics, confirming the design's capability to pump significant flows of two types of fluids, namely gases and liquids. The results of this study demonstrated that the micropump can operate at low voltages while handling substantial flow rates, reaching up to several tens of microliters. This capability addresses the fluid quantity requirements necessary for circulation in the detection area of the Lab on Chip system. An energy requirement of the order of milliwatts has been calculated for the proper functioning of the micropump and its associated electronic modules. To meet the system's energy demands, a piezoelectric microgenerator has also been developed. This device converts biomechanical energy generated by knee flexion into electrical energy through a piezoelectric beam attached to the back of the knee. During walking, the flexion of the knee transforms into electrical energy, which is then rectified by an AC-DC circuit, making this power usable by the system's electronic components. The results obtained from this conversion indicate that the generated power levels increase with the intensity of knee flexion, reaching values in the tens of milliwatts, which fall within the necessary range to ensure continuous and real-time operation of the fluidic system. This approach contributes to the realization of an integrated and autonomous system, optimized both in terms of energy efficiency and functionality.